
Securing a Multiprocessor KVM Hypervisor with
Rust

Yu-Hsun Chiang
National Taiwan University

Taipei, Taiwan
ototot@csie.ntu.edu.tw

Wei-Lin Chang
National Taiwan University

Taipei, Taiwan
r09922117@csie.ntu.edu.tw

Shih-Wei Li
National Taiwan University

Taipei, Taiwan
shihwei@csie.ntu.edu.tw

Jan-Ting Tu
National Taiwan University

Taipei, Taiwan
b08902011@csie.ntu.edu.tw

ABSTRACT
As computations have increasingly shifted to virtual machines
(VMs) running on a hypervisor, the security of the hypervisor
is of critical concern. Rust has gained significant traction
among developers due to its software safety guarantees and
performance efficiency. This work explores building on Rust’s
safety features to construct a secure KVM hypervisor. We
retrofit KVM to incorporate a Rust-based core to protect
virtual machines. We build on Rust’s type and lifetime system
in a novel way to secure the core’s memory accesses in a
concurrent environment. Our resulting KVM implementation,
KrustVM, incorporates a data race and deadlock-free core to
protect VM confidentiality and integrity against privileged
attackers who control the host Linux kernel while preserving
KVM’s commodity features and performance.

CCS CONCEPTS
• Security and privacy → Virtualization and security.

KEYWORDS
Virtualization, Security, Rust

ACM Reference Format:
Yu-Hsun Chiang, Wei-Lin Chang, Shih-Wei Li, and Jan-Ting Tu.
2024. Securing a Multiprocessor KVM Hypervisor with Rust. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’24, November 20–22, 2024, Redmond, WA, USA
© 2024 Association for Computing Machinery.
ACM ISBN 979-8-4007-1286-9/24/11. . . $15.00
https://doi.org/10.1145/3698038.3698562

ACM Symposium on Cloud Computing (SoCC ’24), November 20–
22, 2024, Redmond, WA, USA. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3698038.3698562

1 INTRODUCTION
Rust is an emerging programming language that offers robust
security while retaining performance and efficiency. Rust in-
troduces unique features, such as ownership and lifetimes,
to effectively address memory safety bugs that programmers
may encounter, such as out-of-bound memory access, use-
after-free, and double-free. These bugs are prone to occur
in unsafe programming languages like C. Rust’s compiler
checks against rules and properties to enforce its safety fea-
tures at compile time. Various previous works [4, 10, 12, 14,
34, 48, 60, 67, 68] have adopted Rust to implement core
systems software with critical security and performance re-
quirements. Officials have urged [41] adoption of memory
safety languages like Rust to eliminate bugs.

Modern systems software supports multiprocessor plat-
forms, and concurrently accesses shared memory resources.
Synchronization is necessary to protect the safety of these
concurrent memory accesses. Rust enables fearless concur-
rency [54] by exposing synchronization primitives and mes-
sage passing APIs to support concurrent programming. Rust
provides a synchronization primitive, Mutex, and its API to
enable mutual exclusive operations and mitigate data races.
Nevertheless, Rust’s concurrency API is only available to
userspace programs, not low-level and privileged systems
software like OS kernels or hypervisors. Even if Rust’s con-
currency API, like Mutex, is available to systems software,
the API cannot satisfy critical security demands. Incorrect
usage of Rust’s concurrency API could lead to deadlock that
compromises safety requirements and functionality. Rust can-
not identify errors that double lock the same Mutex.

In addition, Rust’s enforced rules are too restrictive for
low-level systems software, which requires operations that
make memory accesses through raw pointers to manage page

https://orcid.org/0009-0009-7991-5871
https://orcid.org/0009-0004-3972-6236
https://orcid.org/0009-0002-6883-5373
https://orcid.org/0009-0009-2306-6663
https://doi.org/10.1145/3698038.3698562
https://doi.org/10.1145/3698038.3698562

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yu-Hsun Chiang, Wei-Lin Chang, Shih-Wei Li, and Jan-Ting Tu

tables and scrub reclaimed memory pages. These accesses
are deemed unsafe by Rust and forbidden by the compiler.
Rust allows developers to turn off the compile-time checks
using the unsafe keyword, tasking developers to validate
the safety of the unsafe code. A bug found in the unsafe usage
could compromise the safety guarantee of the entire program.
Previous work [9] has disclosed several memory safety bugs
from unsafe Rust code.

Hypervisors are privileged software that manages hardware
resources to provide the virtual machine (VMs) abstraction
and host these VMs. In addition to their prevalent cloud de-
ployment, recent efforts proposed deploying hypervisors to
automotive [20] and mobile [26] systems to isolate critical
components into VMs. Widely used commodity hypervisors,
such as KVM [31] or Hyper-V [46], include a large and com-
plex trusted computing base (TCB) to satisfy users’ require-
ments in performance and functionality. For example, KVM
and Hyper-V each integrate a privileged OS kernel in its TCB.
These hypervisors were written in unsafe languages like C,
making them vulnerable to memory safety bugs. Attackers
that exploit vulnerabilities in the hypervisor TCB may gain
the ability to steal or modify secret VM data or compromise
the VM’s execution.

This work explores building on Rust’s unique language
features to construct a secure Linux/KVM hypervisor. Instead
of rewriting the entire KVM with Rust, we restructured KVM
to incorporate a small Rust-based TCB (denoted as Rcore)
to protect VM confidentiality and integrity against the un-
trusted host Linux kernel in KVM. On top of Rust’s existing
memory safety guarantees, we leverage Rust’s unique lan-
guage features to further secure Rcore’s memory accesses in
a concurrent environment.

To address the limitations of Rust’s concurrency API, we
introduced KMutex, a new Rust type that implements the
semantics of Rust’s Mutex. Unlike Mutex, KMutex can
be used by low-level systems software like hypervisors. In-
corporating the design of Reference Getter Function (RGF),
KMutex enables the Rust compiler to detect deadlock at com-
pile time. Programmers can associate a given data object type
with an intended KMutex. We assign a unique KMutex in-
stance to each shared object and abstract accesses to an object
in its RGF. KMutex provides a safe lock method to provide
a secure way to access the wrapped shared data. Accesses
can be made via the lock method, including reading or writ-
ing to the shared object. An RGF invokes the lock method
of the object’s associated KMutex; it returns a reference to
the wrapped object when its respective KMutex is acquired.
The method incorporates the underlying architecture’s syn-
chronization primitive that guarantees exclusive access at the
hardware level.
KMutex and RGFs are employed to secure concurrent

memory accesses in low-level software. We leverage Rust’s

lifetime and ownership system in a novel way, enabling compile-
time checks that guarantee lock ordering and prevent dou-
ble locking the same KMutex. We mandate that all access
to shared objects occurs exclusively through RGFs, and we
implement a static approach to enforce consistent ordering
across all RGF invocations. These measures, combined with
KMutex’s built-in double locking prevention features, ensure
that KMutex usages do not cause deadlocks, thus guaran-
teeing deadlock freedom. Furthermore, by restricting access
to shared objects solely through RGFs, we ensure that ac-
cesses to shared objects in the software can only occur when
the respective KMutex is held, thus guaranteeing data race
freedom.

We further introduce the customized Safe Pointer types to
hold raw pointers to secure their accesses. Safe pointers en-
sure that each designated type can exclusively store pointers
used against the memory region containing the correspond-
ing data. Raw pointer accesses in Rcore are guarded by the
Safe Pointer types to ensure addresses lie in the intended
memory region. An address-bound check is rigorously en-
forced inside those types during construction. The check is
performed against the addresses that the raw pointers point to.
This hardens against raw pointer exploitation since memory
accesses can only be made with the raw pointer if the check
is validated; out-of-bounds memory accesses are rejected. For
instance, when Rcore uses raw pointers to update page tables,
we ensure that Rcore never mistakenly updates VM execution
state metadata.

We leverage a previous design [36] and utilize Arm’s hard-
ware virtualization extensions to retrofit KVM in Linux 5.15
into KrustVM. By employing the intended usage pattern of
KMutex and RGFs, we secure Rcore’s concurrently accesses
to shared memory objects to ensure data race and deadlock
freedom while utilizing fine-grained locking to optimize per-
formance. We adopt a modular-based design to construct
Rcore to leverage Rust’s memory security guarantees. We
use Safe Pointer types to secure Rcore’s memory accesses.
KrustVM supports multiprocessor VMs running on Arm64
multiprocessor hardware while retaining KVM’s commodity
features. Performance evaluation of KrustVM shows that it
incurs modest overhead to application workloads compared to
mainline KVM and the C-based secure KVM implementation
that adopts the same design [36]. We demonstrate the prac-
ticality of securing a widely adopted commodity hypervisor
using Rust.

In summary, this paper makes the following contributions:

• We leverage Rust’s language features to extend its
safety guarantees beyond memory safety. We devel-
oped a specialized KMutex type that, when adopted, re-
stricts the program’s access to shared memory through
its interface. This restriction ensures deadlock and data

Securing a Multiprocessor KVM Hypervisor with Rust SoCC ’24, November 20–22, 2024, Redmond, WA, USA

race freedom in low-level systems at compile time, even
at scale.

• We introduce the Safe Pointer type to securely store
raw pointers, ensuring each pointer resides within its
designated memory region. By constructing customized
Rust types with Safe Pointers, we safeguard raw pointer
access by enforcing an address-bound check during con-
struction. This mechanism rejects out-of-bound mem-
ory accesses.

• We build on KMutex and Safe Pointers to construct
KrustVM, a Rust-based secure multiprocessor KVM
hypervisor that enforces robust VM protection. An eval-
uation of KrustVM shows that it results in modest per-
formance overhead compared to mainline KVM and
a KrustVM counterpart written in C, demonstrating
Rust’s practicality in low-level system software.

2 BACKGROUND
2.1 The Rust Programming Language
Rust prioritizes safety and speed. Unlike traditional languages
like C/C++, Rust eliminates the need for manual memory
management to ensure memory safety. Rust does not rely on
garbage collection. Instead, it introduces lifetimes and own-
ership, requiring programmers to follow specific rules. This
approach, where programming rules are statically enforced,
allows Rust to perform similarly to C. Rust’s compiler has
complete control over optimizing the machine code it emits.
Rust’s safety rules also guarantee the absence of memory
safety bugs when followed, as the compiler automatically
checks and prevents rule violations.

Ownership and Lifetimes. In Rust, each piece of data is
said to be owned by a single variable, and it is automatically
dropped (freed) when the variable’s lifetime ends. A variable’s
lifetime ends as the program control flow exits the block in
which the variable is declared.

Borrowing. Ownership lacks the flexibility in argument
passing. A variable can borrow ownership from another vari-
able to acquire a reference to the data. Rust’s borrowing rule
enforces aliasing xor mutability meaning there can be multi-
ple shared references or a single exclusive reference. Shared
references can only be read and not modified, and exclusive
references allow for reading and modifying the value. In Rust,
these mutable references that exclusively access the data can
be used by declaring the intended data as mutable (using the
mut keyword) and then using the &mut keyword to borrow
the data mutably.

In Listing 1, line 6 causes a compile error because it tries to
create a mutable reference (z) to x, while y already borrowed
x immutably. y’s lifetime ends on line 9 as it gets used for
the last time; therefore, z can be created on line 11 and used
on line 12. However, if line 16 is uncommented, y’s lifetime

would be extended to line 16, making the creation of z on
line 11 break the borrowing rules.

1 let mut x = vec![1, 2, 3];
2 let y = &x; // immutable borrow of x
3
4 /* this line would fail to compile
5 because x is borrowed immutably by y */
6 let z = &mut x;
7
8 println!("x = {:?}", x); // This line works
9 println!("y = {:?}", y); // This line works

10
11 let z = &mut x; // mutable borrow of x
12 z.push(4);
13
14 /* this line would fail to compile
15 because x is borrowed mutably by z */
16 // println!("y = {:?}", y);

Listing 1: Rust enforces aliasing xor mutability

Drop Traits. Rust traits are properties or interfaces that can
be implemented on types; traits typically require the imple-
menting type to supply function implementations for its trait
methods. Some traits in Rust have intrinsic meaning to the
compiler. For example, the Drop trait tells the compiler that
a type has special freeing code, and the Drop trait’s drop
function should be invoked when an instance of the type’s
lifetime ends.

2.2 Arm Virtualization Extensions
Arm’s Virtualization Extensions (VE) [5] introduced a higher
privileged hypervisor mode (EL2) on top of the existing ker-
nel mode (EL1) and user (EL0) mode. Arm VE provides EL2
registers to run software in an isolated execution context and
address space from EL1 and EL0 to multiplex the execution
context of the host and guest VMs. Arm provides stage 2
page tables (S2PTs) to support memory virtualization. S2PTs
only affect the software running in the EL1 and EL0 modes,
not EL2. The guest kernel manages the stage 1 page tables
(S1PTs) to translate guest virtual addresses (gVAs) to guest
physical addresses (gPAs). The hypervisor, e.g. KVM, enables
stage 2 page tables when running the VMs, which translate
the gPAs (or intermediate physical addresses (IPAs)) to host
physical addresses (hPAs) to access the machine’s memory.
Arm provides an IOMMU, the System Memory Management
Unit (SMMU) [6] to prevent Direct Memory Access (DMA)
attacks.

3 ASSUMPTIONS AND THREAT MODEL
We assume an attacker or a curious administrator who aims
to compromise the integrity and confidentiality of VM data,
which includes code or sensitive data stored in the VM’s CPU
registers, memory, and I/O buffers. VM data exclude generic
hardware configuration information, such as the power control
and virtual interrupt states, since they do not contain secrets.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yu-Hsun Chiang, Wei-Lin Chang, Shih-Wei Li, and Jan-Ting Tu

Like other previous work [36–38, 74], we do not consider
attacks against VM availability. We assume attackers have
remote access to the hardware. A remote attacker can exploit
bugs in the user space VMM and the host kernel integrated
with KVM, or control the VM management interface to access
VM data. We exclude physical [22] and side-channel attacks
from the threat model. We assume a VM does not voluntarily
reveal its sensitive data, intentionally or by accident. However,
a compromised VM may try to attack other hosted VMs for
which we provide protection.

4 OVERVIEW
This section first gives an overview of KrustVM, a multipro-
cessor KVM hypervisor that integrates a Rust-based TCB
called Rcore to protect VMs. We next discuss KMutex, a
novel Rust type with lock-safe API that protects concurrent
memory accesses. KMutex facilitates the construction of data
race-free and deadlock-free low-level systems software like
hypervisors. In addition, we discuss the Safe Pointer type
that we introduced to implicitly enforce bound checks against
raw pointer usage to protect memory safety, complementing
Rust’s incapability in guaranteeing safety for raw pointers.

Host

EL0

EL1

EL2

isolated

QEMU

Host Linux
Kernel Guest Kernel

Guest
Apps

VM

KVM lowvisor

KVM/Arm

QEMU

Host Linux
Kernel Guest Kernel

Guest
Apps

Rcore
VM protection

KrustVM

Host Apps

VM

Host Apps

Figure 1: KrustVM Architecture.

4.1 KrustVM Overview
We leverage the hypervisor design introduced by our pre-
vious work, HypSec [36], to retrofit KVM into KrustVM.
Figure 1 shows the architecture of KrustVM. Unlike KVM
(shown on the left) that includes the host Linux kernel in its
TCB, KrustVM relies on a Rust-based TCB, called Rcore
to protect VM confidentiality and integrity against an un-
trusted KVM host that encompasses the host Linux kernel.
We separate access control from resource allocation to reduce
the TCB. Rcore focuses on protecting VM data in CPU and
memory from the KVM host. KrustVM relies on the KVM
host for resource allocation and scheduling. Rcore enforces
access control to ensure resources assigned to the VM are
inaccessible to the untrusted KVM host. Many applications
are designed to use encrypted I/O channels. Like previous
work [1, 26, 36–38], we assume VMs employ an end-to-end

approach [56] to protect I/O data and avoids duplicating the
protection efforts.

Given Arm’s growing popularity in deployments [3, 51,
69], our current KrustVM implementation secures KVM for
Arm. Section 6.1.1 details how we leverage Arm’s VE fea-
tures to retrofit KVM into KrustVM. Rcore protects VMs’
CPUs by interposing VM exits. For events that require the
host’s functionality, Rcore saves the VM CPU registers from
the hardware to its private memory, which the host cannot
access, and then restores the host’s CPU registers to the hard-
ware. Rcore performs the same action in reverse before enter-
ing the VM.

To protect VM memory, Rcore uses Arm’s S2PT to enforce
memory access control. Rcore enables S2PTs when running
the KVM host and VMs so that they do not have direct access
to physical memory. Rcore manages and updates all S2PTs.
Rcore allocates S2PTs for all entities from their respective
page table pool to which the host and VMs have no access.
Rcore employs an identity map in the KVM host’s S2PT,
translating each KVM host’s IPA to an identical hPA. This
allows KrustVM to reuse Linux’s memory allocator to man-
age memory implicitly. Rcore unmaps VMs’ private memory
pages from the KVM host’s or other VMs’ S2PTs. Rcore
also unmaps its memory pages from all S2PTs, making them
inaccessible to VMs and the host. Unauthorized access to
unmapped pages made by a compromised host results in an
S2PT fault routed to Rcore, allowing it to reject such invalid
host memory accesses.

A compromised KVM host can control devices to per-
form DMA to read or write VM memory. Rcore leverages
Arm’s SMMU to protect DMAs. Rcore allocates and manages
SMMU page tables from its private memory for each DMA-
capable device. It trap-and-emulates the host’s access to the
SMMU to prevent the host from controlling the SMMU.

4.2 KMutex
Locks are commonly used to synchronize concurrent shared
memory accesses. However, incorrect usage of locks can
compromise data integrity and service availability. To address
these concerns, KrustVM leverages Rust’s type system to
guarantee freedom from data races and deadlocks at com-
pile time. Our approach supports fine-grained locking and is
designed for easy adoption, ensuring high performance and
minimal development effort.

In addition to its promise of memory safety, Rust is known
for its Fearless Concurrency [54]. Rust’s ownership model
carefully tracks the usage of every piece of data and automat-
ically derives information on data shareability among threads.
Consequently, Rust can preemptively detect and prevent data
races at compile-time. Rust supports concurrent programming

Securing a Multiprocessor KVM Hypervisor with Rust SoCC ’24, November 20–22, 2024, Redmond, WA, USA

by exposing structures such as mpsc for message passing or
Mutex for managing shared states.

However, Rust’s Mutex has limitations that prevent di-
rect use in building a secure multiprocessor hypervisor. First,
the library only supports user space programs. For instance,
on Linux, the Mutex in the Rust standard library is imple-
mented with the pthreads library. This makes these data
structures unsuitable for use in a hypervisor or other low-level
systems. Second, Rust’s synchronization primitives do not
guarantee deadlock freedom, so their use might accidentally
compromise a service’s availability. We aim to develop a safer
alternative that ensures deadlock freedom while preserving
the ease of use.

4.2.1 KMutex Design. We developed a custom lock data
type named KMutex, designed to safeguard the data within
Rcore. KMutex is a generic data structure capable of holding
arbitrary data alongside a lock. Every instance of KMutex
will have its lock, so every KMutex can protect its inner
data accordingly. Instead of exposing methods such as new
to create KMutex instances, we require that all data and
KMutex initialization occur during the boot time. This choice
is deliberate, as it aligns with our objective of safeguarding
static global metadata.

The sole exposed method of KMutex is lock. The pro-
gram must call the lock method to gain access to the data en-
capsulated within KMutex. The lock method first acquires
the lock and subsequently returns a Resource Acquisition Is
Initialization (RAII) guard. This guard is an instance of a
generic type. In Rust, generic type definitions can be used
with various concrete data types, enabling code reuse. The
guard contains a mutable reference to T, enabling us to access
and manipulate the data encapsulated by T.

To release the lock, we have implemented the Drop trait
for Guard<T>. This allows us to rely on the Rust compiler
to track the use of the RAII guard and automatically insert
the unlock call to release the lock. This removes the need
to manually release the lock and eliminates concerns about
releasing it at the wrong time. Consequently, we can access
data protected by the lock with confidence, without worrying
about the unlocking process.

We aim to reduce the code size of Rcore and avoid integrat-
ing a lock library with Rcore. Therefore, we implement both
locking and unlocking mechanisms through Arm’s exclusive
access instructions [42]. We wrapped the instructions in inline
assembly.

We design our lock API carefully to achieve deadlock free-
dom and eliminate misuse of KMutex that compromises the
availability of KrustVM. The key idea of our approach is to
leverage the ownership model of Rust to ensure that the lock
method of KMutex cannot be called unless the existing RAII
guard is dropped. The first three lines of Listing 2 show the

function signature of the lock method from Rust’s default
Mutex. It only requires the caller to pass an immutable ref-
erence when calling the lock method. Since Rust permits
immutable references to be created arbitrarily many times, a
careless programmer may legally call lock when holding
the respective Mutex, leading to a self-deadlock.

The last three lines of Listing 2 show the function signa-
ture of the lock method in KMutex. This looks similar to
Mutex since we still want the user of this type to have a simi-
lar experience as using the one from the Rust standard library.
The main difference of the lock method between KMutex
and Mutex is the presence of the mut keyword (see line
5 of Listing 2). We embed the mutable reference mut into
Guard, so the Rust ownership model will release the mut
reference once the Guard gets released. Meanwhile, since
the guard is holding the mut reference and the Rust compiler
rejects the creation of other mut references of KMutex, a
program cannot call lock to create another guard while hold-
ing the one created in a previous call to lock, thus preventing
self-deadlocks.

1 impl<T: ?Sized> Mutex<T> {
2 pub fn lock(&self)->LockResult<MutexGuard<'_,T>>{...}
3 }
4 impl<T: ?Sized> KMutex<T> {
5 pub fn lock(&mut self)->Guard<'_,Self>{...}
6 }

Listing 2: Function signature of the lock method of
KMutex and Mutex

4.2.2 Reference Getter Functions (RGFs). We assign
a unique KMutex instance to each of Rcore’s shared object
types. Rcore must call the KMutex’s lock method to ac-
quire the respective inner shared objects. To manage access to
these shared memory objects, Rcore uses a set of RGFs; each
RGF is bound to a specific shared object type. Once the lock
is acquired, the corresponding RGF returns a reference to that
type’s KMutex instance. Rcore dereferences the reference
to KMutex instance that wraps the actual shared object to
perform the intended access. Accesses to shared objects in
Rcore were made through the respective RGF. This approach
ensures that access to shared objects in Rcore can only occur
when the respective KMutex is held, guaranteeing data race
freedom. In the following subsection, we discuss how we
restrict the invocation order of RGFs in Rcore to ensure dead-
lock freedom. RGFs follow Rust’s interior unsafe [49] design
pattern. RGFs expose a safe interface but encapsulate unsafe
operations in its actual implementation. This eliminates sig-
nificant use of unsafe code blocks in Rcore’s implementation.
We discuss a concrete RGF implementation in Section 5.2.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yu-Hsun Chiang, Wei-Lin Chang, Shih-Wei Li, and Jan-Ting Tu

4.2.3 Enforcing Lock Order. We force the caller to pass
a mutable reference to the lock method to rule out self-
deadlocking. However, deadlock-freedom cannot be ensured
yet since deadlocks can occur not only when a single lock
is acquired twice but also when multiple locks wait for each
other. We define a partial order among the equivalence classes
of KMutex for the shared data types in Rcore. For a given
partial order, if 𝐴 ≤ 𝐵, we ensure that it is impossible to
acquire 𝐴 after acquiring 𝐵. Failing to follow the order can
result in lock order inversions. We utilize Rust’s lifetime sys-
tem and traits to safeguard against such inversions at compile
time. Figure 2 presents the lock acquisition order in the Rcore
implementation. Note that this order is valid, i.e., containing
no deadlocks, since the graph does not contain cycles.

PMEM info S2PT info SMMUPT info

LEntry VM info SMMU info

Figure 2: Lock acquisition order within Rcore. Here, a
block𝐴 points to 𝐵 means that𝐴 ≤ 𝐵 is in the given partial
order. Table 1 defines the respective data type for each
block.

We impose restrictions on RGFs to enforce the intended
partial order dependency when acquiring/releasing locks to
avoid deadlocks when nested-locking multiple locks. An RGF
that returns a mutable reference to KMutex<A> must be
called with a mutable reference of T that implements the trait
CanGetA, where A is the name of the type. For each shared
type A, all types T where T has an edge that points to A in Fig-
ure 2 implements the trait CanGetA. Rust suggests marking
traits as unsafe when improper implementation could result
in a safety violation. For CanGet* traits, implementing any
of them without following the desired partial order (Figure 2)
can lead to a cycle in the acquisition order, which could cause
a deadlock. Therefore, we mark all of the CanGet* traits as
unsafe, so that we check the implementation follows the
desired partial order and ensure safety.

For an RGF of A, we pass a &mut T, where T: Can-
GetA to get &mut KMutex<A>. For instance, in line 13 of
Listing 3, we get a &mut KMutex<A> (ref_a) by passing
a mutable reference b into the RGF get_a (b is of type
&mut B, and B implements CanGetA on line 3). When b is
passed to the RGF, instead of moving b into the function, the
Rust compiler actually reborrows (i.e. changing b to &mut
*b, line 12), and creates an anonymous mutable reference to B,

1 pub unsafe trait CanGetA {}
2 // SAFETY: We've manually verified the order
3 unsafe impl CanGetA for B {}
4
5 pub fn get_a<T:CanGetA>(_:&mut T)->&mut KMutex<A>{...}
6
7 fn foo(ref_b: &mut KMutex) {
8 let mut b = ref_b.lock();
9

10 /* b in the following line gets converted to
11 "&mut *b" by the compiler */
12 let ref_a = get_a(b);
13
14 /* this does not compile
15 because ref_a's lifetime is not over */
16 let ref_c = get_c(b);
17
18 let mut a = ref_a.lock();
19 a.do_a_work();
20
21 // we can use b after this
22 b.do_b_work();
23 }

Listing 3: An example that violates the predefined lock
order. (Assuming 𝐵 → 𝐴 is in the lock acquisition order
graph)

then moves it into the RGF. The RGFs are implemented such
that the required passed-in mutable reference (in this case, the
anonymous reference) has the same lifetime as the returning
mutable reference ref_a of type &mut KMutex<A>. The
anonymous mutable reference must live as long as ref_a.
In this case, from line 13, where the anonymous mutable ref-
erence is first created, to line 20, where ref_a is used for
the last time. Between lines 13 to 20, which the anonymous
mutable reference to B (b)’s lifetime spans, Rust does not
allow any access to B other than the anonymous mutable ref-
erence, otherwise, two mutable reference to the same object
will have their lifetimes overlap. And, since there is no way
to use the anonymous mutable reference because it is moved
into the RGF, any access to B can only be made via a different
reference to B. Therefore, the Rust compiler forbids any ac-
cess to B before ref_a gets dropped because the anonymous
reference has the same lifetime as ref_a’s.

4.3 Safe Pointer
When implementing low-level systems, like hypervisors, raw
pointer access is inevitable. However, incorrect raw pointer
accesses can easily violate Rust’s ownership model. Rust al-
lows parts of a program to be marked as unsafe, disabling
compiler checks to support operations such as raw pointer ac-
cesses. Many software bugs stem from discrepancies between
the address a pointer references and the intended address it
should point to. For example, the S2PT walking code must
calculate the addresses of each level’s page table entry. If
the calculation is incorrect, a raw pointer access against the
resulting addresses may inadvertently access or modify an
unrelated memory region. Such unintended behavior could

Securing a Multiprocessor KVM Hypervisor with Rust SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Table 1: Rcore Metadata

Name Description of Data
VM info The per-VM execution state metadata.

S2PT info The S2PT pool allocation status.

PMEM info The memory ownership and sharing status.

SMMU info The SMMU management metadata.

SMMUPT info The SMMUPT pool allocation status.

compromise VM security, potentially leading to writes to
guest memory or other hypervisor metadata. To address this
problem, we introduced Safe Pointer types to hold raw point-
ers. We bound-check the addresses that the pointers point
to, ensuring that each designated type can exclusively store
pointers within a designated memory region.

Raw pointers in Rust can be unaligned or null, but they
must be non-null and aligned when dereferenced. Further-
more, references in Rust must be non-null, aligned, and point-
ing to memory containing a valid value. We extend these
semantics and create a set of Safe Pointer types. Each Safe
Pointer type is associated with a specific memory region. We
require Safe Pointers to be non-null, aligned, and pointing to
a memory inside the corresponding memory region. Instead
of validating the address every time we access it, we validate
a given address inside the constructor of a Safe Pointer type.
If the given address does not fall within the desired area, we
reject the construction and return None to the caller. Rust
provides a more rigorous type safety guarantee than C. It
forbids arbitrary type casts and ensures data are sanctioned
by its type. Since a Safe Pointer type can only be constructed
through its constructor, we can ensure each of its instance
points to a desired memory region.

Safe Pointer types simplify programmers’ efforts to reason
about the validity of a pointer. Based on the type semantics
and Safe Pointer types, programmers can dereference safe
pointers and update data inside them without worrying about
corrupting an unexpected memory region. This costlessly
improves the security of systems that require many direct
memory accesses.

5 SECURING KRUSTVM WITH RUST
5.1 Rcore Metadata
The resulting Rcore implementation supports multiproces-
sor VMs running on multiprocessor hardware. Rcore concur-
rently runs on different processor cores and may access shared
memory. We build on Rust’s safety checks while leveraging
KMutex’s lock-safe API and Safe Pointer types, achieving
strong memory safety guarantees. To achieve the best perfor-
mance possible, Rcore uses fine-grained locking to protect
concurrent memory accesses. Rcore concurrently accesses

Rcore Metadata and the Page Table Pool. As its name sug-
gests, the Rcore’s Page Table Pool keeps private pools of phys-
ical pages for S2PTs and SMMU page tables. Table 1 shows
Rcore’s Metadata. The metadata is used for tracking page
table allocation status (S2PT info and SMMUPT info),
physical memory page ownership (PMEM info) and VM
states management (VM info), SMMU page table metadata
(SMMU info), etc. We constructed custom types to store
these Rcore Metadata.

5.2 Modularizing Rcore
In our implementation, we modularized Rcore into two layers:
Safety and Func layers. The Safety layer includes Rcore’s
functionality that requires unsafe Rust. By encapsulating un-
safe Rust, we could implement the complex features for VM
protection in the Func layer in safe Rust, leveraging Rust’s
compile-time check to enforce safety guarantees.

Safety Layer. The Safety layer follows Rust practices and
exposes a safe API to the Func layer that wraps the unsafe
usage. This includes RGFs and Rcore’s custom Safe Pointer
types. Section 4.2 discusses the approaches we employed to
secure data race and deadlock freedom for Rcore memory
accesses to shared data within the Rcore Area, including the
Rcore Metadata and page tables (see Figure 3). Section 4.3
discusses the Safe Pointer types we created to ensure spatial
memory safety by imposing bound checks.

Rcore Metadata
Page
Table
Pool

Generic Area, access bounded
by GenericPhysRegion type

Rcore Metadata, access via RGFs,
data race free and deadlock free

Rcore Page Table Pool, access bounded
by PTEAddr type

physical address space

Rcore Area

SMMU

SMMU Area, access bounded
by SMMURegion type

Figure 3: KrustVM Memory Regions.

Func Layer. Rcore categorizes metadata and memory ob-
jects into different Rust types. The Func layer implements the
methods for these types. For instance, Rcore implements the
methods for the type that corresponds to PMEM info (see
Table 1) to track memory ownership for each memory page.
Each type stores a group of related data, and each method
implements a function that acts on the instance’s fields. Types
serve as a valuable tool for constraining the operations per-
formed on data based on their concrete semantics. This makes

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yu-Hsun Chiang, Wei-Lin Chang, Shih-Wei Li, and Jan-Ting Tu

it easier for programmers to understand operations they can
perform on the data and avoid misuse.

The Func layer uses the API exposed by the Safety layer
to build complex hypervisor functionality. For example, it
invokes the safe RGF (see Listing 4) to obtain a mutable
reference to a given Rcore object, such as the PMEM info
metadata, then invokes its methods to fulfill virtualization
tasks, such as assigning page owner to a VM in page fault
handling. The Func layer builds on the safety guarantees
enforced by the Safety layer.

5.3 Adopting KMutex and Safe Pointers
5.3.1 KMutex and RGFs. The enforced lock acquisition
order within Rcore is shown in Figure 2. For functions that
take a lock without already holding a lock (the entry node), a
zero-sized type LEntry which implements every CanGet*
traits defined in Rcore.

We associate an instance of KMutex for each data type
in Table 1. We create an instance of KMutex for VM info
and S2PT info for each VM. For each of the other data
types, a single instance of KMutex is used to protect con-
current memory access. We allocate all KMutex instances
during the boot time of the host machine. As discussed in
Section 4.2.1, this prevents attackers from maliciously cre-
ating new KMutex instances that override existing ones to
compromise lock safety.

We aggregate Rcore metadata structures into a single big
structure RcoreMetadata (line 1 in Listing 4) to simplify
the memory region used by these metadata. All CPU cores
share metadata in Rcore; some are per CPU. Data shared by
all CPU cores should be protected by KMutex. Hence, all of
them are of type KMutex<T> (an example is line 3 in List-
ing 4), where T is the type that actually stores Rcore metadata.
Since there is no existing memory allocator in a hypervisor
environment, we directly inform where in the address space
Rcore should use. Specifically, we predefined the address to
the instance of RcoreMetadata and manually initialize
this memory region at boot time so it can be used safely (line
7).

The Func layer can use RGFs to access metadata with
safe Rust, allowing the Func layer to implement all the func-
tionality without using unsafe Rust. Each RGF returns a
mutable reference to one of the fields in RcoreMetadata.
Line 10 of Listing 4 shows an example. It returns the mutable
reference of the type KMutex<PMemInfo>. The RGF is
implemented by:

(1) dereference the raw pointer using the * operator
(2) pick the pmem_info field of RcoreMetadata
(3) prepend &mut to take the mutable reference of the field

and return the mutable reference; once acquiring the

1 struct RcoreMetadata {
2 [...] // other fields omitted
3 pub pmem_info: KMutex<PMemInfo>,
4 [...] // other fields omitted
5 }
6
7 const RCORE_METADATA_PTR: *mut RcoreMetadata
8 = /* Rcore's memory address */;
9

10 // the RGF of pmem_info
11 pub fn get_pmem_info<T: CanGetPMemInfo>(_: &mut T)
12 -> &mut KMutex<PMemInfo> {
13 // SAFETY: The memory pointed has been initialized.
14 // Also, the data is properly wrapped in a KMutex
15 // and the caller have the permission to get PMemInfo
16 unsafe {
17 &mut (*RCORE_METADATA_PTR).pmem_info
18 }
19 }

Listing 4: Rcore Metadata and Reference Getter Function

reference, Rcore can access the wrapped data within
pmem_info

Listing 5 shows a function in the Func layer that clears a
page’s mapping in the host’s S2PT. At line 2, the RGF get_-
s2pt_info is called and it returns a reference of KMutex-
<S2PTInfo>, which stores the S2PT information of the host.
After obtaining the reference to KMutex<S2PTInfo>, the
lock method is called to lock the structure. At line 5, the
method walk_s2pt is called to walk the S2PT to check if
the leaf entry is zero, and set_s2pt is called on line 6 to
clear the S2PT entry if not. This demonstrates how the Func
layer utilizes the Safety layer.

1 fn clear_pfn_host<T: CanGetS2PTInfo>
2 (caller: &mut T, pfn: usize) {
3 let s2pt_info = get_s2pt_info(caller, HOST);
4 let mut guard = s2pt_info.lock();
5
6 if guard.walk_s2pt(pfn << PAGE_SHIFT) != 0 {
7 guard.set_s2pt(pfn << PAGE_SHIFT, 0);
8
9 [...] // details omitted

10 }
11 }

Listing 5: An example function in the Func layer

5.3.2 Safe Pointers. We encapsulated unsafe raw pointer
usages in Rcore with Safe Pointer types. As shown in Fig-
ure 3, Rcore accesses four disjoint memory regions in the
physical address space: Rcore Metadata, Page Table Pool,
SMMU Area, and Generic Area. The Rcore Area includes
the Rcore Metadata and Page Table Pool. The SMMU Area
corresponds to the SMMU hardware. The Generic Area refers
to the memory region in the physical address space other than
the Rcore and SMMU areas. KrustVM relies on the KVM
host to allocate memory to VMs from the Generic Area. Rcore
reads from or writes to memory from this region to perform
several tasks, including authenticating VM boot images and

Securing a Multiprocessor KVM Hypervisor with Rust SoCC ’24, November 20–22, 2024, Redmond, WA, USA

scrubbing memory pages of a terminated VM before returning
the pages to the KVM host. We created a set of Safe Pointer
types to hold addresses respective to the four memory regions
in Figure 3 to secure Rcore memory accesses. We discuss
how we protect Rcore’s raw pointer accesses to the generic
area as the case study.

1 impl GenericPhysRegion {
2 pub fn new(start_addr: usize, size: usize) ->

Option<Self> {↩→
3 let end = start_addr + size;
4 // overlap check
5 if (end > RCORE_AREA_START &&
6 RCORE_AREA_END > start_addr) ||
7 (end > SMMU_AREA_START &&
8 SMMU_AREA_END > start_addr) {
9 None

10 } else {
11 Some(Self { start_addr, size })
12 }
13 }
14
15 // returns a mutable `u8` slice for the caller
16 // to access generic area memory
17 pub fn as_slice(&self) -> &'static mut [u8] {
18 // convert the physical address to the virtual

address↩→
19 let va = pa_to_va(self.start_addr);
20 unsafe {
21 core::slice::from_raw_parts_mut(
22 va as *mut u8, self.size,
23)
24 }
25 }
26 }

Listing 6: GenericPhysRegion guarantees that every
instance points to a valid generic area range

Raw Pointer Access: Generic Area. Generic area accesses
are done by calculating raw addresses and writing to them
via raw pointers. Raw pointers are necessary here because
system RAM is just a range of flat address space to Rcore. We
created a Safe Pointer type called GenericPhysRegion
(as shown in Listing 6) to secure Rcore’s access to memory in
the generic area. GenericPhysRegion can only point to
a memory range in the generic area. We carefully check the
address provided during construction and reject any invalid ad-
dress to ensure that every instance of GenericPhysRegion
points to a valid memory region. This eliminates out-of-bound
memory accesses to other areas.

The constructor of GenericPhysRegion, namely the
new method at line 2 in Listing 6, verifies whether the mem-
ory range specified by the arguments (start address start_-
addr and access size size) is contained within the bounds
of the generic area. If the specified range overlaps with the
Rcore Area or the SMMU area, the constructor returns a
None variant, indicating that the construction has failed. List-
ing 7 shows an example usage of GenericPhysRegion.

The function clear_page from the Func layer takes a phys-
ical frame number (pfn) and scrubs the page. Generic-
PhysRegion::new() at line 2 takes the physical address
of the page (pfn « PAGE_SHIFT) and its size (PAGE_-
SIZE) as arguments to perform the bound check at the con-
structor. The caller of GenericPhysRegion::new() gets
a GenericPhysRegion if the check passes; otherwise,
clear_page returns an Error type. In the former case,
clear_page clears the page contents at line 4. Otherwise,
clear_page returns an error at line 2, effectively prevent-
ing the unbounded memory access and propagating the ab-
sence of a value up the call stack.

1 fn clear_page(pfn: usize) -> Result<()> {
2 let page = GenericPhysRegion::new(pfn << PAGE_SHIFT,

PAGE_SIZE).ok_or(Error::InvalidPfn)?;↩→
3 // the `fill` method for type &[u8] fills the slice

with the value passed in↩→
4 page.as_slice().fill(0);
5 Ok(())
6 }

Listing 7: Example usage of GenericPhysRegion

6 IMPLEMENTATION
Our KrustVM implementation supports KVM in mainline
Linux 5.15. The resulting Rcore consists of 3.8K LOC of
safe Rust, 0.2K LOC of unsafe Rust, 0.4K LOC of ARM
assembly, and 10K LOC of C. The ARM assembly code
is sourced from the mainline KVM for world switch and
exception vectors. The 10K LOC of C is attributed to the
verified HACL* [75] crypto library for Ed25519 and AES
implementation linked with Rcore. We added and modified
roughly 1K LOC to Linux to install Rcore. Since our codebase
is based on Linux 5.15, we leverage the LTO support from
LLVM [40] to optimize the Rust code.

The unsafe Rust code in Rcore consists of the following:
(1) unsafe assembly routines to acquire and release locks,
(2) unsafe trait implementations for Rcore metadata types to
ensure lock order (Section 4.2.2), (3) unsafe LEntry usages
(Section 4.2.2), (4) unsafe raw pointers for accessing the
isolated memory regions (Section 4.3), (5) unsafe C function
calls to the HACL* library, (6) unsafe assembly routines for
world switch and cache/TLB maintenance (Section 6.1.3),
and (7) unsafe raw pointers for accessing Per-CPU variables
(Section 6.2).

We also implemented HypSec [36] in C based on Linux
kernel 5.15 (denoted as HypSec-5.15). HypSec-5.15’s TCB
consists of 3.4K LOC of C and 400 LOC in ARM assembly,
linked with the formally verified HACL* [75] library. Rcore
is slightly larger than HypSec-5.15’s TCB due to the language
features that Rcore leverages, such as the traits we defined
and implemented to protect memory accesses. We extended

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yu-Hsun Chiang, Wei-Lin Chang, Shih-Wei Li, and Jan-Ting Tu

QEMU v4.0.0 based on the open source artifact [16] released
by previous work [37] that also follows Hypsec’s design to
support KrustVM and HypSec-5.15.

6.1 Adapting KVM to KrustVM
6.1.1 Retrofit KVM/Arm for VM Protection. As discussed
earlier, KrustVM supports Arm-based hardware with VE sup-
port. As shown in Figure 1, Rcore runs in EL2 to isolate itself
from the KVM host, which the host Linux kernel and VMM
run in less privileged EL1 and EL0. In KVM [18], the host
has full access to the memory used by the lowvisor in EL2.
In KrustVM, the host is isolated from Rcore that runs in EL2.
Rcore sets up Arm’s HCR_EL2 register to enable S2PT when
running the host and trap VM exits and interrupt to EL2. The
untrusted host cannot access EL2 registers to disable or con-
trol privileged hardware features. Rcore follows HypSec’s
design and exposes a set of hypercalls for the host to request
services that require EL2 privileges. For example, once the
host schedules a virtual CPU, it makes a hypercall to Rcore
to execute the VM.

KrustVM reuses the device drivers from the KVM host to
manage I/O devices and provide I/O virtualization. KrustVM
trap-and-emulates VMs’ MMIO accesses in the host. VMs
perform MMIOs to configure and manage virtual hardware
and they involve no sensitive information. Paravirtual I/O
frameworks such as virtio [53] require the hypervisor to ac-
cess VM memory. Virtio devices from the hypervisor commu-
nicate with the VM via shared ring buffers for sending and
receiving encrypted data stored in I/O buffers in VM mem-
ory. Based on HypSec’s design, Rcore exposes the grant
and revoke hypercalls for VMs to share and unshare their
memory with the KVM host. This is crucial since the host,
which provides virtio devices, cannot access VM memory by
default. KrustVM follows HypSec’s design and relies on the
KVM host to provide interrupt virtualization.

KrustVM builds on the VM secure boot mechanism pro-
posed by HypSec that leverages public key cryptography to
verify the signature of the signed VM images. KrustVM en-
sures that only trusted VM boot images can run in the VM.
Rcore allows the host Linux to make the VM CREATE and
VM BOOT hypercalls to create a new VM and load boot im-
ages, such as the kernel binary. Rcore uses Ed25519 from the
integrated HACL* library to authenticate the integrity of the
boot images. The VM’s public key is securely loaded into
Rcore’s private memory before VM boot, so Rcore can use
the key to verify against the respective VM image signature.
Rcore stops VM boot if the verification fails. We enlightened
QEMU to use KrustVM’s secure VM boot API.

Rcore exposes hypercalls to KVM host for exporting en-
crypted VM data. The KVM host utilizes these hypercalls to
implement features such as swapping VM memory to disk

or VM management functions, including VM snapshots and
migration.

6.1.2 Rcore Area Protection. We modified KVM to al-
locate a physically contiguous memory region as the Rcore
Area. We allocated a reserved memblock [30] during boot
time to correspond to the Rcore Area. This prevents the host
Linux kernel from allocating free pages from this area. We
followed HypSec’s design and rely on the host Linux to in-
stall Rcore to EL2 at boot time. After Rcore is installed, it
subsequently deprivileges the host Linux kernel and activates
stage 2 page tables to restrict the host’s memory access. It
ensures the Rcore Area is unmapped from the host’s stage 2
page table.

6.1.3 Hardware Accesses. Rcore encapsulates the func-
tionality of KVM’s lowvisor to world switch CPU states. As
mentioned in Section 4, Rcore multiplexes the execution con-
text of the host kernel and guest on the Arm hardware. The
context comprises CPU states, including the general purpose
and Arm’s EL1 system registers. Rcore employs Rust’s syntax
to wrap the inline assembly code used for world switching the
EL1 system registers. Rcore’s other functionality that requires
inline assembly, including the primitives enforcing mutual
exclusion for KMutex and TLB/cache invalidation, were also
wrapped in Rust’s inline assembly syntax.

6.2 Integrating Rcore with KVM
Efforts were made to fulfill the goal of running our custom
Rust code in EL2. Firstly, LLVM requires basic functions,
such as memcpy and memset even in a freestanding environ-
ment [62]. Since Rcore minimized codebase does not contain
Linux’s implementations of these functions, we manually
implemented these functions and redirected ELF symbols
to our implementations. Furthermore, like KVM, we link
code to be executed in EL2 in a separate ELF section. This
was done by annotating functions through Rust’s attribute
link_section to locate them in the right section.

Finally, Rcore builds on top of KVM’s existing support to
provide access to Per-CPU variables to software running in
EL2. Rcore creates the metadata called vCPU context for
every VCPU of a given VM. Rcore uses a Per-CPU variable
to track the scheduling status to ensure the same VCPU can-
not simultaneously run on two different CPU cores. KVM
allocates a memory buffer to store all per-CPU variables. Sim-
ilarly, Rcore stores a unique offset to each core’s TPIDR_-
EL2 register. We create a helper class to assist Rcore to access
them correctly. We successfully encapsulated three unsafe
statements into a higher-level primitive. This includes reading
the address of the extern static variable first, then reading
TPIDR_EL2 via inline assembly, and lastly, dereferencing

Securing a Multiprocessor KVM Hypervisor with Rust SoCC ’24, November 20–22, 2024, Redmond, WA, USA

the calculated address. Regarding memory safety, TPIDR_-
EL2’s value for each CPU is not modified after boot time
initialization. Hence, no out-of-bound accesses can happen
because the address for each Per-CPU variable remains static.

6.3 Compiling KrustVM
As Linux 5.15 does not have built-in Rust support, we imple-
mented Rcore in a single crate on the no_std environment
and compiled it into a single static library. Our implementa-
tion is compatible with the Linux kernel codebase. For exam-
ple, the page size definition is identical in Rcore and KVM.
Also, types like kvm_vcpu are shared between Linux and
Rcore. These type definitions were generated automatically
with the tool bindgen [11]. For constants that are used by
both Linux and Rcore, we copied them from C to Rust manu-
ally. Due to the limited support of macros in bindgen and
the heavy usage in Linux, we did not use it to generate con-
stants. Regarding alignment, field layout order, and padding
of custom types, Rust provides an attribute #[repr(C)]
that ensures the data layout of the marked type has the same
layout as in C.

6.4 Contributing the Community
During our implementation, we found that Rust and LLVM
lack some ARMv8-specific features. Specifically, we encoun-
tered compilation errors when attempting to access specific
system registers in the default Rust configuration. However,
these features are crucial for a hypervisor like KrustVM that
programs low-level hardware states. To mitigate this issue,
we took the initiative to contribute patches [71, 72] to both
LLVM and Rust rather than relying on workarounds. We
believe the contribution benefits the community, facilitating
Rust’s adoption in Arm-based systems.

7 EVALUATION
We evaluated the performance of KrustVM, HypSec-5.15, and
mainline KVM. The bare metal environment is also tested
using the same benchmarks to establish a baseline reference.
All workloads were run on the Raspberry Pi 4 Model B de-
velopment board, with a Broadcom BCM2711 quad-core
Cortex-A72 (ARM v8) 64-bit SoC at 1.5GHz, 4GB of RAM,
and a 1 GbE NIC device.

KrustVM, HypSec-5.15, and the mainline KVM are based
on Linux 5.15. QEMU v4.0.0 was used to start the virtual
machines on Ubuntu 20.04. The guest kernels also used Linux
5.15, and all kernels tested employed the same configuration.
We used the enlightened QEMU (see Section 6) to run VMs
on KrustVM and HypSec-5.15. For KVM, we used the main-
line QEMU 4.0.0. We applied the same patch from HypSec
to the guest Linux kernel to enable virtio. rustc version
1.68.0-nightly was used to compile Rcore, while clang 15.0.0

Table 2: Application Benchmarks

Name Description
Kernbench Compilation of the Linux 6.0 kernel using

tinyconfig for Arm with GCC 9.4.0.
Hackbench hackbench [52] using Unix domain sockets

and 50 process groups running in 50 loops.
Netperf netperf [29] v2.6.0 running the netserver

on the server and the client with its default
parameters in three modes: TCP_STREAM
(throughput), TCP_MAERTS (throughput),
and TCP_RR (transmission rate).

Apache Apache v2.4.41 Web server running
ApacheBench [64] v2.3 on the remote
client, which measures the number of handled
requests per second (throughput) when serving
the 41 KB index.html file of the GCC 4.4
manual using 100 concurrent requests.

Memcached memcached v1.5.22 using the
memtier [50] benchmark v1.2.3 with
its default parameters. Measures operations
per second (throughput).

YCSB-Redis redis v7.0.11 using the YCSB [13] bench-
mark v0.17.0 with its default parameters. Mea-
sures operations per second (throughput).

was used to compile the remaining components of KrustVM,
the mainline KVM, and the guest kernels.

7.1 Performance Evaluation
Application Performance. We ran the benchmarks listed in
Table 2 in a single VM running on KrustVM, HypSec-5.15
and the mainline KVM, and bare-metal. We configured the
hardware with two physical CPUs and 1 GB of RAM for
the bare metal setup, for testing KrustVM, HypSec-5.15 and
mainline KVM, each VM is equipped with two virtual CPUs
and 1 GB RAM, and the hypervisor runs on the full hardware
available. For client-server experiments, servers were run on
the Raspberry Pi, while the clients were run on a separate x86
Linux machine with 8 CPU cores and 16 GB RAM, with a
1 GbE cable connecting the two. Vhost-net is enabled for all
VMs. Figure 4 shows the results of VM performance normal-
ized against bare-metal performance. 1.00 refers to no virtual-
ization overhead (i.e., the same as bare-metal). A higher value
means higher overhead. The performance of these real appli-
cation workloads show modest overhead overall for KrustVM
compared to mainline KVM and HypSec-5.15.

In the TCP_MAERTS benchmark, it can be observed that
mainline KVM, HypSec-5.15 and KrustVM all outperformed
the bare-metal setup. The benchmark evaluates the TCP send

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yu-Hsun Chiang, Wei-Lin Chang, Shih-Wei Li, and Jan-Ting Tu

throughput on the server. We suspect this is because the vir-
tio driver in the guest kernel batches multiple packet sends
before submitting the data to the backend virtio driver in the
hypervisor host, which transfers the batched data to the NIC.
In contrast, the bare-metal driver transmits packet data to the
NIC for each transmission, leading to a higher overhead.

KrustVM showed modest overhead compared to KVM. In
most cases, the overhead is within 10%. KrustVM suffered
higher overhead in networking benchmarks (i.e., Netperf,
Apache, Memchached, YCSB-Redis) that are more complex.
KrustVM does not allow the host kernel to access the I/O data
stored in VM memory by default. Therefore, to enable virtio,
we follow HypSec [36]’s approach and modified the guest
kernel to make the grant and revoke hypercalls to Rcore
to share/unshare memory with the host explicitly for each
I/O transaction. VMs on KrustVM and HypSec-5.15 suffered
from additional hypercall overhead while running network
workloads. This effect can be observed to be larger for TCP_-
RR and Memcached since these two benchmarks are more I/O
intensive compared to other networking benchmarks, making
the latency caused by grant and revoke hypercalls more
noticeable. Future optimizations, such as batching grant
and revoke hypervisor during I/O transactions, could be
incorporated to enhance performance.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2

ke
rn

be
nc

h

ha
ck

be
nc

h

TC
P_

M
AER

TS

TC
P_

ST
REA

M

TC
P_

RR

Apa
ch

e

M
em

ca
ch

ed

YC
SB

-R
ed

is

mainline
HypSec-5.15

KrustVM

(results are normalized to bare-metal performance)

Figure 4: Application Benchmark Performance.

Multi-VM Performance. We evaluated the performance of
workloads running in multiple concurrent VMs. We used three
configurations for each hypervisor setting. We ran Hackbench
in 1 VM and concurrently in 2 and 4 VMs. In the multi-VM
setups, we started Hackbench in all VMs simultaneously. Be-
cause the Raspberry Pi 4 model B hardware has only 4 GB
of RAM to spare, we allocated 512 MB of RAM to each VM.
Each VM is configured with 1 VCPU. The number of process
groups started by Hackbench is also lowered from 50 to 20 in
response to the more resource-constrained VM setups. The
results are shown in Figure 5. Similarly, we normalized the
results to bare-metal performance using the same number of
CPUs and RAM. 1.00 refers to no virtualization overhead. As
expected, overhead gradually increased for all hypervisors as

the number of VMs running in parallel increased. Hackbench
causes memory pressure. It forks multiple processes to per-
form IPCs. Concurrent VMs running Hackbench enlarge the
memory footprint, resulting in stage 2 page faults due to more
VM access to unmapped gPAs, thus suffering from higher
page fault handling overhead.

In our evaluation, Hackbench ran slower on KVM com-
pared to HypSec and KrustVM. We suspect this is because
HypSec and KrustVM employ a more simplistic counter-
based algorithm than KVM to track page table allocation
status, thus causing less performance overhead compared to
KVM, which relies on Linux’s memory allocators to allocate
page tables.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5

1VM 2VMs 4VMs

mainline
HypSec-5.15

KrustVM

(results are normalized to bare-metal performance)

Figure 5: Multi-VM Hackbench Performance.

Scaling VCPUs. We tested Hackbench on VMs with a higher
number of VCPUs: 2 and 4 VCPUs, on each hypervisor con-
figuration. Each VM uses 1 GB of RAM. The results are
shown in Figure 6. The results are normalized to bare-metal
performance using 4 physical CPUs and 1 GB of RAM. The
setups with 2 VCPUs exhibit virtualization overhead close
to 100% because they only had half the number of CPUs to
run the benchmark. All three hypervisors demonstrated their
ability to scale from 2 to 4 VCPUs, each running around twice
as fast when assigned with 4 VCPUs.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2

2vcpus 4vcpus

mainline
HypSec-5.15

KrustVM

(results are normalized to bare-metal performance)

Figure 6: Multi-VCPU Hackbench Performance.

Securing a Multiprocessor KVM Hypervisor with Rust SoCC ’24, November 20–22, 2024, Redmond, WA, USA

7.2 Safety Analysis
Our goal is to ensure the Rcore implementation is data race-
free and deadlock-free. We elucidate below how the syner-
gistic utilization of KMutex and RGFs help to achieve these
two properties.
Data race freedom. We ensure that every access or mutation
to shared metadata in Rcore is guarded by KMutex to elimi-
nate data races. Rust permits unsafe reads or writes to shared
global data. We ensure unsafe shared data accesses do not ex-
ist in Rcore. All shared data reads or writes must be conducted
via KMutex. Rcore is required to use the lock method to
access the wrapped shared data protected by KMutex. Our
implementation provides no safe Rust alternatives for access-
ing shared data to Rcore. As mentioned earlier, lock invokes
the Arm assembly to impose mutual exclusion. Data race
freedom of stage 2 page table accesses is guaranteed by mak-
ing sure that Rcore only accesses stage 2 page tables within
S2PTInfo’s methods, thereby protecting the stage 2 page
table metadata and the page tables themselves with the same
lock. Additionally, Rcore does not provide any way for VMs
to share stage 2 page tables, therefore chances for inter-VM
stage 2 page table data races are also eliminated.
Deadlock freedom. We identify two causes that could result
in a deadlock scenario: multiple same lock acquisition and
incorrect lock acquire & release ordering. We discuss how
Rcore prevents the scenarios to deliver deadlock freedom.

Multiple same lock acquisition: KMutex’s lock method
requires the caller to pass a mutable reference. Rust prohibits
the creation of multiple mutable references from the same
object while any of them is still in use. Consequently, this
design empowers the Rust compiler to detect and reject self-
deadlocking scenarios when utilizing KMutex.

Incorrect lock acquire & release ordering: We ensure that
Rcore always follows the pre-defined partial order to acquire
and release KMutexes. We ensure the acquisition order of
KMutexes always follows the desired partial order. The ac-
quired KMutexes are automatically released by the corre-
sponding Drop trait in the reverse of the acquisition order,
thus ensuring KMutexes are released accordingly to the de-
sired order.

A lock order inversion is impossible due to two reasons.
First, we implemented every CanGet* trait based on the par-
tial order between locks. If a given order indicates that Rcore
should not acquire KMutex after acquiring KMutex<A>,
the type A must not implement the CanGetB trait. Assume
Rcore acquires KMutex<A> and gets a mutable reference to
type A, &mut A. Since the partial order is strictly followed,
type A does not implement CanGetB. Therefore, Rust for-
bids passing &mut A to B’s RGF, preventing such lock inver-
sion.

Second, we ensure that, for a single CPU, at most, one
KMutex can be active at any time. Two factors (F1 and F2)
uphold this guarantee. F1: KMutex does not have a con-
structor, and neither do any types that implement any of the
CanGet* traits. F2: as shown in Listing 3, the design of any
RGFs for T ensures that a passed-in mutable reference to an
object that implements a CanGet* cannot be used until the
returned &mut KMutex<T> gets dropped. The only way
to construct a type with any of the CanGet* traits imple-
mented is via the unsafe constructor of LEntry, which
have manually ensured is called only once at the entry point
of Rcore.

A given type may implement multiple different CanGet*
traits. For instance, a type B may implement CanGetA and
CanGetC traits, where A is different from C. Assume a muta-
ble reference to B (b) is passed to the RGF of type A to get a
&mut KMutex<A> (ref_a). F2 ensures that b cannot be
active before ref_a’s lifetime ends. The example shown in
line 19 of Listing 3 passes b to type C’s RGF. Rust prohibits
the usage since it requires b to be active before the passing.
Preserving Rust’s Safety Requirements To prevent data
races, Rust’s ownership model forbids multiple mutable ref-
erences to the same object to coexist simultaneously if no
mechanism is used to synchronize these reads and writes to
the object. We explain why the design of KMutex and RGF
preserves Rust’s safety requirements.

We consider two aspects: the data protected by KMutex
and mutable references to KMutex (&mut KMutex). For
the former, KMutex’s lock method enforces mutual exclu-
sion to synchronize and protect concurrent data accesses.
For the latter, we show that no modification can be made
to KMutex itself. We next explain why such a condition is
adequate through the Tree Borrows (TB) [66] aliasing model.
First, KMutex exposes no methods that can mutate itself.
Second, we cannot replace an existing KMutex with a newly
created one since KMutex does not provide a constructor;
this prevents a locked object from being replaced. Finally,
only one KMutex object can be active for a single CPU, so
we cannot swap two existing KMutexs as swapping requires
both mutable references to be active.

Based on the TB model, the creation of mutable references
across different CPUs is treated as foreign read accesses in
our case. Upon creation, mutable references initially exist
in the Reserved state, allowing both foreign and child reads
without restriction. Even if a reference transits to the Frozen
state due to a protector, these reads remain permissible at
any time. Consequently, the creation and reading of multiple
mutable references, without modification, are consistently
valid operations.

We employed the TB version Miri [39] to analyze our
code and validate our approach. Given Miri’s limitation in

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yu-Hsun Chiang, Wei-Lin Chang, Shih-Wei Li, and Jan-Ting Tu

directly verifying multi-CPU programs, we simulated a multi-
CPU environment by spawning two threads. This simulation
enabled us to evaluate the robustness of our approach in a
concurrent execution context. Miri revealed no UB.

Additionally, compiler optimizations would not break any
of our security foundations. First, the borrow checker executes
before the optimizer so that optimizations won’t affect the
enforced lock orders. Second, the TB model stipulates that
compilers cannot arbitrarily introduce write operations where
no explicit writes to a given mutable reference exist in the
original code. Consequently, we can guarantee that operations
on KMutex mutable references will be limited to read access.

8 DISCUSSION
8.1 Security
KrustVM assume the same threat model as previous work [36].
Thus, KrustVM protects VMs against the CVEs addressed in
that work [36]. The Rust compiler cannot check for logical
errors, such as those resulting from hardware misconfigura-
tion. On top of Rust’s existing security guarantees, such as
automatic bound checks for array types, we extended its ca-
pability to eliminate data races and deadlocking and isolate
memory regions.

The unsafe Rust usage in Rcore, as shown in Section 6,
encompasses raw pointer usages safeguarded by Safe Pointers
and those for accessing predefined addresses. For the latter,
we manually validate the source code to eliminate unintended
memory accesses. The unsafe usages also include machine
state operations (e.g., TLB flushes and world switches) that
require inline assembly, which is orthogonal to memory safety
and thus beyond Rust’s safety scope. Finally, for unsafe traits
and object creations, as shown in Section 4.2.2, we have
carefully examined their usages to ensure they are safe.

8.2 Scalability
In our current implementation, it requires manual effort to
implement traits carefully to ensure the validity of the partial
order. With more locks involved, the effort may grow signifi-
cantly. However, it is possible to automate this process with
Rust’s macro system, as we have clear naming rules for helper
traits. For example, we can convert the partial order to a total
order and implement helper traits between any two entities
accordingly. Since all the acquisition edges are generated au-
tomatically, if we correctly implement the macro rule, we can
safely assert the order contains no cycle so no deadlock can
happen.

Further, though KrustVM currently allocates KMutex in-
stances statically, incorporating dynamic allocation is possi-
ble. We could extend RGFs to support dynamic allocation,
reuse its interface, and avoid high complexity. Specifically,
we can adapt RGFs to first check the existence of the required

object and allocate it if it is not present; otherwise, return the
object directly. This would not break KMutex’s soundness.
Since the allocation happened in RGFs, we must provide
CanGet* to the RGF to get the newly allocated objects. This
means that at any time, we can only hold at most one muta-
ble reference to a KMutex in a single CPU. Hence, even if
the object is dynamically allocated, we still do not have any
means to mutate it or use it to mutate other objects (e.g., swap
to KMutex).

KrustVM’s current implementation partitions the address
space into distinct regions. We employ Safe Pointer to con-
strain memory access to these regions. The bound checks
enforced when constructing a Safe Pointer can be extended to
support finer granularity. For instance, we could further split
the Page Table Pool into multiple regions, each serving as a
pool for a single page table level (e.g., page directory, page
middle directory, etc.), then represent each region with a Safe
Pointer type. Safe Pointer can be generalized to secure raw
pointer accesses in Rust to ensure these accesses are confined
within pre-defined bounded memory regions. Although raw
pointer accesses in Rust can significantly impact memory
safety, they are rarely used [8]. The cost of Safe Pointer exists
only during construction but not on later memory accesses.
Therefore, utilizing Safe Pointer incurs minimal overhead
while enhancing security.

8.3 Portability
KMutex and safe pointer types are generalizable to other

low-level systems, including Linux components. KMutex
provides a reusable, architecture-agnostic interface for wrap-
ping shared objects. The main challenge lies in encoding lock
order into Rust’s type system, which requires careful analysis
of lock relationships. This involves constructing a call graph
of lock usage sites, which can be automatically translated into
Rust traits and implementations to facilitate implementing
RGFs. For safe pointers, raw pointer accesses are typically
region-confined (e.g., Linux’s slabs [44]) in low-level systems.
Safe pointers offer a reusable interface that simplifies pointer
integrity validation compared to direct address handling or
reference conversion. Developers can adjust bounds checks
based on system-specific requirements, enhancing memory
safety for low-level systems dealing with raw pointers.

Porting KrustVM to an x86-64-based platform is also
possible. Overall, our extensions to Rust are architectural-
independent. We believe that the extensions can be ported
to x86-based with modest efforts. Developers only need to
replace the Arm-based synchronization primitive used by
the lock method for KMutex with an x86-64-based imple-
mentation, such as an x86-based spinlock. Furthermore, the
hypervisor design [36] that we adopted in this work is com-
patible with an x86-64 environment. Like Armv8, x86-64

Securing a Multiprocessor KVM Hypervisor with Rust SoCC ’24, November 20–22, 2024, Redmond, WA, USA

provides similar virtualization features, including nested pag-
ing (e.g., NPT/EPTs) and hardware-based control structures
(e.g., VMCS) to deprivilege the host Linux and interpose
VM exits. We expect an x86-64-based implementation of
KrustVM to leverage these features.
8.4 Verification

The Kani Rust Model Checker [65] is an open-source tool
to verify the Rust code. Kani operates as a Rust compiler
backend, exhibiting decent execution performances compared
to other Rust-based model-checking tools. Kani’s efficiency
stems from the fact that it utilizes Rust code’s type informa-
tion within Mid-level Intermediate Representation (MIR), a
radically simplified form of Rust that is used widely inside
the Rust compiler, to conduct bit-precise model checking,
enabling itself to prune invalid branches but maintain the cor-
rectness of the verification by examining all possible values.

In this work, we have explored the integration of Kani into
our workflow. We have formally verified the correctness of the
bound condition embedded in custom Safe Pointer types in
KrustVM. In other words, we have verified that the implemen-
tation delivers the intended behavior to enforce bound checks
for three custom types, GenericPhysRegion, PTEAddr,
and SMMURegion In future work, we intend to explore
Kani’s full capability in verifying KrustVM’s unsafe Rust
code blocks.
9 RELATED WORK
VM Protection. Various previous work [26, 35, 37, 45, 70,
74] redesigned the hypervisor to protect VMs. Unlike our
work, none of them used Rust to secure their hypervisor im-
plementation. KrustVM and SeKVM [37] both leveraged
an earlier design [36] to retrofit and secure KVM, provid-
ing the same level of VM protection. SeKVM included a
formally verified core to protect VMs against an untrusted
host Linux kernel, while KrustVM relies on a Rust-based
Rcore to protect VMs. Formal verification of the concurrent
C-based SeKVM core requires significant effort. The authors
took two person-years to complete the correctness and secu-
rity proofs. In contrast, our Rust-based implementation took
less than one person-year while ensuring properties verified
systems provide, including memory safety, data race, and
deadlock freedom. Arm’s Confidential Compute Architec-
ture (CCA) [7] provides similar VM protection guarantees
to KrustVM. To support CCA, Arm introduced a new Realm
world to run protected VMs, and secure firmware called the
Realm Management Monitor (RMM); the latter controls the
CCA hardware to prevent a compromised hypervisor from
tampering with VM safety. To our knowledge, no Arm hard-
ware has been implemented in CCA. KrustVM utilizes Arm’s
VE features available on the current Arm hardware without
CCA to host protected VMs.

KrustVM is compatible with future CCA-featuring hard-
ware. KrustVM could be extended to run simultaneously with
CCA and offer an alternative approach for hosting protected
VMs. On CCA, the RMM running on the EL2 mode of the
Realm world hosts VMs and protects them by interposing
their enters/exits. Like KrustVM, the RMM could transfer
control to the hypervisor on a VM exit to use its function-
ality. VM enters and exits to the hypervisor (which runs in
the normal world) on CCA involves more costly world/mode
switches (KVM (normal EL1) ↔ EL31 ↔ RMM (realm
EL2) ↔ VM (realm EL1/EL0)) than KrustVM, which re-
quires a simpler path that is exclusively in the normal world
(KVM (normal EL1) ↔ Rcore (normal EL2) ↔ VM (normal
EL1/EL0)). Although both CCA and KrustVM offer similar
VM protection, KrustVM’s efficient VM/hypervisor transi-
tions could result in better performance.
Rust-based Systems. Recent work extended existing C/C++
systems with a Rust binding to enable a Rust-based program-
ming environment. Rust-SGX [68] and RusTEE [67] wrapped
the C/C++ TEE SDK and exposed a safe Rust API to enable
Rust programming in TEE environments such as SGX and
TrustZone. Similarly, the Rust-for-Linux [19] project added
abstraction layers to the Linux kernel to facilitate Rust driver
programming with Rust. Besides building a Rust binding,
previous work re-implemented C-based components in virtu-
alization systems with Rust. rust-vmm [55] rewrote a subset
of QEMU’s functionalities and separated them into libraries
in Rust crates. Firecracker [2], crosvm [21], Cloud Hypervi-
sor [43], and VMSH [63] extended the rust-vmm project with
extra functionalities. These previous works built on top of
existing core systems. In contrast, our work retrofitted Lin-
ux/KVM with a Rust-based TCB. HyperEnclave [28] relies
on a Rust-based security monitor to enforce isolation between
enclave TEEs. Unlike our work, the authors did not discuss
the Rust monitor’s implementation and its unsafe Rust usage.

Others [10, 12, 34, 48, 73] took a clean-slate approach to
build an OS from scratch. Similar to our work, they aimed
to limit unsafe Rust usage in their codebase and separated
unsafe Rust in a small trusted component from the safe Rust
codebase [10, 34, 48]. Our work goes beyond limiting and
confining unsafe Rust and guarantees memory and lock safety.
Synchronization Primitives. Message-passing-based syn-
chronization enables concurrent executions to coordinate and
synchronize through sending and receiving messages. Rust’s
standard library provides a message-passing API. Rust’s type
system allows developers to employ session types [24, 25]
to enforce specified message-passing protocols. Past studies
proposed customized session types to provide varying de-
grees of expressiveness. This includes but is not limited to

1CCA integrates a secure monitor running in Arm’s EL3 mode to mediate
switches between Realm and normal world.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yu-Hsun Chiang, Wei-Lin Chang, Shih-Wei Li, and Jan-Ting Tu

basic binary session type [27], shared sessions [15], asynchro-
nous message reordering [17], and exception handling [32,
33]. KrustVM adopts shared-state synchronization instead of
message-passing for several reasons. First, while message-
passing-based synchronization is prevalent in microkernel-
based hypervisors [23, 59], Linux/KVM leverages shared-
state synchronization. We extend this familiar mechanism,
aiming to implement safe locking strategies that ensure data
race freedom and maintain system availability. This approach
preserves the performance efficiency inherent to shared-state
synchronization. Unlike message-passing, which can incur
significant overhead due to cross-core message exchange
among concurrent executions, our locking-based approach fa-
cilitates efficient information exchange among multiple cores
via shared memory regions. Moreover, our goal is to maintain
Rcore’s simplicity while providing essential VM protection
functionalities. Message-passing support, such as Rust’s ex-
isting message-passing APIs, typically relies on OS features
like threading abstraction unavailable in Rcore’s minimalist
environment. Integrating message-passing synchronization
into Rcore could unnecessarily complicate its codebase.

Other works [47, 58] have also implemented deadlock-
free mechanisms for Rust. However, unlike our approach,
these mechanisms do not support nested locking. On the
other hand, [57, 61] ensure deadlock freedom for Rust while
supporting nested locking. However, they rely on runtime
resolution checks, which can introduce significant overhead
during execution. In contrast, our approach that combines
KMutex and RGFs adopts a static approach to eliminate
deadlocks at compile time.

10 CONCLUSIONS
We have presented KrustVM, a secure multiprocessor KVM
hypervisor that integrates a Rust-based Rcore to protect VM
confidentiality and integrity against a compromised host Linux
kernel. We exploited Rust’s unique safety features, includ-
ing the type system and lifetimes, and extended them in a
novel way to ensure that Rcore’s codebase is data race and
deadlock-free. Additionally, we introduced the Safe Pointer
type to secure Rcore’s memory accesses. KrustVM accom-
plishes substantial security enhancements over KVM while
preserving KVM’s functionality and performance efficiency.

ACKNOWLEDGMENTS
We thank our shepherd, Daniel Bittman, and other anonymous
reviewers for your insightful feedback. This research was
supported by the National Science and Technology Council
of Taiwan under research grants 111-2218-E-002-015-MBK
and 112-2634-F-002-001-MBK.

REFERENCES
[1] Advanced Micro Devices. 2018. Secure Encrypted Virtualization API

Version 0.16. https://support.amd.com/TechDocs/55766_SEV-KM%
20API_Spec.pdf.

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In
17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). USENIX Association, Santa Clara, CA, 419–434.
https://www.usenix.org/conference/nsdi20/presentation/agache

[3] Amazon Web Services, Inc. 2018. Introducing Amazon EC2
A1 Instances Powered By New Arm-based AWS Graviton Pro-
cessors. https://aws.amazon.com/about-aws/whats-new/2018/11/
introducing-amazon-ec2-a1-instances/.

[4] Brian Anderson, Lars Bergstrom, Manish Goregaokar, Josh Matthews,
Keegan McAllister, Jack Moffitt, and Simon Sapin. 2016. Engineering
the Servo Web Browser Engine Using Rust. In 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-
C). 81–89.

[5] ARM Ltd. 2013. ARM Architecture Reference Manual ARMv8-A
DDI0487A.a.

[6] ARM Ltd. 2016. ARM System Memory Management Unit
Architecture Specification - SMMU architecture version 2.0.
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/
IHI0062D_c_system_mmu_architecture_specification.pdf.

[7] ARM Ltd. 2022. Introducing Arm Confidential Compute Architecture
Version 1. https://developer.arm.com/documentation/den0125/0100/
What-is-Arm-CCA-.

[8] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller,
and Alexander J. Summers. 2020. How Do Programmers Use Unsafe
Rust? Proc. ACM Program. Lang. 4, OOPSLA, Article 136 (nov 2020),
27 pages. https://doi.org/10.1145/3428204

[9] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Tae-
soo Kim. 2021. Rudra: Finding Memory Safety Bugs in Rust at the
Ecosystem Scale. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21).
Association for Computing Machinery, New York, NY, USA, 84–99.
https://doi.org/10.1145/3477132.3483570

[10] Ankit Bhardwaj, Chinmay Kulkarni, Reto Achermann, Irina Cal-
ciu, Sanidhya Kashyap, Ryan Stutsman, Amy Tai, and Gerd Zell-
weger. 2021. NrOS: Effective Replication and Sharing in an Oper-
ating System. In 15th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 21). USENIX Association, 295–312.
https://www.usenix.org/conference/osdi21/presentation/bhardwaj

[11] bindgen maintainer. 2023. bindgen. https://github.com/rust-lang/rust-
bindgen.

[12] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. 2020.
Theseus: an Experiment in Operating System Structure and State
Management. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, 1–19.
https://www.usenix.org/conference/osdi20/presentation/boos

[13] Brian Cooper. 2021. Yahoo! Cloud Serving Benchmark. https://github.
com/brianfrankcooper/YCSB.

[14] Jiahao Chen, Dingji Li, Zeyu Mi, Yuxuan Liu, Binyu Zang, Haib-
ing Guan, and Haibo Chen. 2023. Security and Performance in the
Delegated User-level Virtualization. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23). USENIX As-
sociation, Boston, MA, 209–226. https://www.usenix.org/conference/
osdi23/presentation/chen

[15] Ruo Fei Chen, Stephanie Balzer, and Bernardo Toninho. 2022. Ferrite:
A Judgmental Embedding of Session Types in Rust. In 36th European

https://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
https://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
https://www.usenix.org/conference/nsdi20/presentation/agache
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances/
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances/
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf
https://developer.arm.com/documentation/den0125/0100/What-is-Arm-CCA-
https://developer.arm.com/documentation/den0125/0100/What-is-Arm-CCA-
https://doi.org/10.1145/3428204
https://doi.org/10.1145/3477132.3483570
https://www.usenix.org/conference/osdi21/presentation/bhardwaj
https://github.com/rust-lang/rust-bindgen
https://github.com/rust-lang/rust-bindgen
https://www.usenix.org/conference/osdi20/presentation/boos
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://www.usenix.org/conference/osdi23/presentation/chen
https://www.usenix.org/conference/osdi23/presentation/chen

Securing a Multiprocessor KVM Hypervisor with Rust SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Conference on Object-Oriented Programming (ECOOP 2022) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 222), Karim
Ali and Jan Vitek (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 22:1–22:28. https://doi.org/10.4230/
LIPIcs.ECOOP.2022.22

[16] Columbia University. 2021. SOSP 21: Artifact Evaluation: Verifying a
Multiprocessor Hypervisor on Arm Relaxed Memory Hardware. https:
//github.com/VeriGu/sosp-paper211-ae.

[17] Zak Cutner, Nobuko Yoshida, and Martin Vassor. 2022. Deadlock-free
asynchronous message reordering in rust with multiparty session types.
In Proceedings of the 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (Seoul, Republic of Korea)
(PPoPP ’22). Association for Computing Machinery, New York, NY,
USA, 246–261. https://doi.org/10.1145/3503221.3508404

[18] Christoffer Dall and Jason Nieh. 2014. KVM/ARM: The Design and
Implementation of the Linux ARM Hypervisor. In Proceedings of the
19th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Salt Lake City, Utah, USA)
(ASPLOS ’14). Association for Computing Machinery, New York, NY,
USA, 333–348. https://doi.org/10.1145/2541940.2541946

[19] Rust for Linux Team. 2023. Rust for Linux. https://rust-for-linux.com/.
[20] Andrea Gallo. 2021. Software Defined Vehicles and the need for

standardization. https://static.linaro.org/assets/automotive_white_
paper_0921.pdf

[21] Google. 2023. ChromiumOS Virtual Machine Monitor. https://
chromium.googlesource.com/chromiumos/platform/crosvm/.

[22] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appel-
baum, and Edward W. Felten. 2009. Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52, 5 (May 2009), 91–98.
https://doi.org/10.1145/1506409.1506429

[23] Gernot Heiser and Ben Leslie. 2010. The OKL4 Microvisor: Conver-
gence Point of Microkernels and Hypervisors. In Proceedings of the
1st ACM Asia-pacific Workshop on Workshop on Systems (APSys 2010).
New Delhi, India, 19–24.

[24] Kohei Honda. 1993. Types for dyadic interaction. In CONCUR’93, Eike
Best (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 509–523.

[25] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Lan-
guage primitives and type discipline for structured communication-
based programming. In Programming Languages and Systems, Chris
Hankin (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 122–
138.

[26] Jake Edge. 2020. KVM for Android. https://lwn.net/Articles/836693/.
[27] Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis

Larsen. 2015. Session types for Rust. In Proceedings of the 11th
ACM SIGPLAN Workshop on Generic Programming (Vancouver, BC,
Canada) (WGP 2015). Association for Computing Machinery, New
York, NY, USA, 13–22. https://doi.org/10.1145/2808098.2808100

[28] Yuekai Jia, Shuang Liu, Wenhao Wang, Yu Chen, Zhengde Zhai,
Shoumeng Yan, and Zhengyu He. 2022. HyperEnclave: An Open
and Cross-platform Trusted Execution Environment. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22). USENIX Association,
Carlsbad, CA, 437–454. https://www.usenix.org/conference/atc22/
presentation/jia-yuekai

[29] Rick Jones. 2018. Netperf. https://github.com/HewlettPackard/netperf.
[30] The kernel development community. 2023. Boot time memory manage-

ment. https://docs.kernel.org/core-api/boot-time-mm.html.
[31] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.

2007. KVM: the Linux Virtual Machine Monitor. In Proceedings of
the 2007 Ottawa Linux Symposium (OLS 2007), Vol. 1. Ottawa, ON,
Canada, 225–230.

[32] Wen Kokke. 2019. Rusty Variation: Deadlock-free Sessions with Fail-
ure in Rust. Electronic Proceedings in Theoretical Computer Science
304 (Sept. 2019), 48–60. https://doi.org/10.4204/eptcs.304.4

[33] Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. 2022.
Stay Safe Under Panic: Affine Rust Programming with Multiparty
Session Types. In 36th European Conference on Object-Oriented Pro-
gramming (ECOOP 2022) (Leibniz International Proceedings in In-
formatics (LIPIcs), Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 4:1–
4:29. https://doi.org/10.4230/LIPIcs.ECOOP.2022.4

[34] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogramming
a 64kB Computer Safely and Efficiently. In Proceedings of the 26th
Symposium on Operating Systems Principles (Shanghai, China) (SOSP
’17). Association for Computing Machinery, New York, NY, USA,
234–251. https://doi.org/10.1145/3132747.3132786

[35] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo Chen, and Haibing
Guan. 2021. TwinVisor: Hardware-Isolated Confidential Virtual Ma-
chines for ARM. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21).
Association for Computing Machinery, New York, NY, USA, 638–654.
https://doi.org/10.1145/3477132.3483554

[36] Shih-Wei Li, John S. Koh, and Jason Nieh. 2019. Protecting Cloud Vir-
tual Machines from Commodity Hypervisor and Host Operating System
Exploits. In Proceedings of the 28th USENIX Conference on Security
Symposium (Santa Clara, CA, USA) (SEC’19). USENIX Association,
USA, 1357–1374.

[37] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John
Zhuang Hui. 2021. A Secure and Formally Verified Linux KVM
Hypervisor. In 2021 IEEE Symposium on Security and Privacy (SP).
1782–1799. https://doi.org/10.1109/SP40001.2021.00049

[38] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh,
Yousuf Sait, and Gareth Stockwell. 2022. Design and Verification of
the Arm Confidential Compute Architecture. In 16th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 22).
USENIX Association, Carlsbad, CA, 465–484. https://www.usenix.
org/conference/osdi22/presentation/li

[39] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. 2021.
MirChecker: Detecting Bugs in Rust Programs via Static Analysis. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, Republic of Korea) (CCS
’21). Association for Computing Machinery, New York, NY, USA,
2183–2196. https://doi.org/10.1145/3460120.3484541

[40] Linus Torvalds. 2021. Linux Kernel Mailing List. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=79db4d2293eba2ce6265a341bedf6caecad5eeb3.

[41] Bob Lord. 2023. The Urgent Need for Memory Safety in Software Prod-
ucts. https://www.cisa.gov/news-events/news/urgent-need-memory-
safety-software-products.

[42] Arm Ltd. 2023. Exclusive access instructions. https://developer.arm.
com/documentation/100934/0100/Exclusive-access-instructions.

[43] Cloud Hypervisor maintainers. 2023. Cloud Hypervisor - Run
Cloud Virtual Machines Securely and Efficiently. https://www.
cloudhypervisor.org/.

[44] Mel Gorman. 2007. Slab Allocator. https://www.kernel.org/doc/
gorman/html/understand/understand011.html.

[45] Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, and Haibing Guan.
2020. (Mostly) Exitless VM Protection from Untrusted Hypervisor
through Disaggregated Nested Virtualization. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, 1695–1712.
https://www.usenix.org/conference/usenixsecurity20/presentation/mi

https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://github.com/VeriGu/sosp-paper211-ae
https://github.com/VeriGu/sosp-paper211-ae
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1145/2541940.2541946
https://rust-for-linux.com/
https://static.linaro.org/assets/automotive_white_paper_0921.pdf
https://static.linaro.org/assets/automotive_white_paper_0921.pdf
https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://doi.org/10.1145/1506409.1506429
https://lwn.net/Articles/836693/
https://doi.org/10.1145/2808098.2808100
https://www.usenix.org/conference/atc22/presentation/jia-yuekai
https://www.usenix.org/conference/atc22/presentation/jia-yuekai
https://github.com/HewlettPackard/netperf
https://docs.kernel.org/core-api/boot-time-mm.html
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3477132.3483554
https://doi.org/10.1109/SP40001.2021.00049
https://www.usenix.org/conference/osdi22/presentation/li
https://www.usenix.org/conference/osdi22/presentation/li
https://doi.org/10.1145/3460120.3484541
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=79db4d2293eba2ce6265a341bedf6caecad5eeb3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=79db4d2293eba2ce6265a341bedf6caecad5eeb3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=79db4d2293eba2ce6265a341bedf6caecad5eeb3
https://www.cisa.gov/news-events/news/urgent-need-memory-safety-software-products
https://www.cisa.gov/news-events/news/urgent-need-memory-safety-software-products
https://developer.arm.com/documentation/100934/0100/Exclusive-access-instructions
https://developer.arm.com/documentation/100934/0100/Exclusive-access-instructions
https://www.cloudhypervisor.org/
https://www.cloudhypervisor.org/
https://www.kernel.org/doc/gorman/html/understand/understand011.html
https://www.kernel.org/doc/gorman/html/understand/understand011.html
https://www.usenix.org/conference/usenixsecurity20/presentation/mi

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yu-Hsun Chiang, Wei-Lin Chang, Shih-Wei Li, and Jan-Ting Tu

[46] Microsoft. 2016. Hyper-V Technology Overview. https:
//docs.microsoft.com/en-us/windows-server/virtualization/hyper-
v/hyper-v-technology-overview.

[47] Mike White. 2024. HappyLock: Deadlock Free Mutexes. https://crates.
io/crates/happylock.

[48] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,
Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. 2020. RedLeaf:
Isolation and Communication in a Safe Operating System. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 21–39. https://www.usenix.org/
conference/osdi20/presentation/narayanan-vikram

[49] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang.
2020. Understanding Memory and Thread Safety Practices and Is-
sues in Real-World Rust Programs. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (London, UK) (PLDI 2020). Association for Computing
Machinery, New York, NY, USA, 763–779. https://doi.org/10.1145/
3385412.3386036

[50] Redis Labs. 2015. memtier_benchmark. https://github.com/RedisLabs/
memtier_benchmark.

[51] Reuters. 2018. Cloud companies consider Intel rivals after the discovery
of microchip security flaws. https://www.cnbc.com/2018/01/10/cloud-
companies-consider-intel-rivals-after-security-flaws-found.html.

[52] Rusty Russell. 2008. Hackbench. http://people.redhat.com/mingo/cfs-
scheduler/tools/hackbench.c.

[53] Rusty Russell. 2008. virtio: Towards a De-Facto Standard for Virtual
I/O Devices. SIGOPS Operating Systems Review 42, 5 (July 2008),
95–103.

[54] Rust-book. 2023. Fearless Concurrency. https://doc.rust-lang.org/
book/ch16-00-concurrency.html

[55] rust-vmm maintainers. 2023. rust-vmm. https://github.com/rust-vmm.
[56] J. H. Saltzer, D. P. Reed, and D. D. Clark. 1984. End-to-end Arguments

in System Design. ACM Transactions on Computer Systems (TOCS) 2,
4 (Nov. 1984), 277–288.

[57] Shelby Doolittle. 2021. cooptex. https://crates.io/crates/cooptex.
[58] Stefan Mack. 2024. Deadlocker. https://crates.io/crates/deadlocker.
[59] Udo Steinberg and Bernhard Kauer. 2010. NOVA: A Microhypervisor-

based Secure Virtualization Architecture. In Proceedings of the 5th
European Conference on Computer Systems (EuroSys 2010). Paris,
France, 209–222.

[60] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran.
2020. Intra-Unikernel Isolation with Intel Memory Protection Keys. In
Proceedings of the 16th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (Lausanne, Switzerland)
(VEE ’20). Association for Computing Machinery, New York, NY, USA,
143–156. https://doi.org/10.1145/3381052.3381326

[61] Tanishq Jain. 2023. JThread-rs - deadlock-free mutex lock library.
https://crates.io/crates/jthread.

[62] The Clang Team. 2024. clang - the Clang C, C++, and Objective-C
compiler, Description: -ffreestanding. https://clang.llvm.org/docs/
CommandGuide/clang.html#cmdoption-ffreestanding

[63] Jörg Thalheim, Peter Okelmann, Harshavardhan Unnibhavi, Redha
Gouicem, and Pramod Bhatotia. 2022. VMSH: Hypervisor-Agnostic
Guest Overlays for VMs. In Proceedings of the Seventeenth European
Conference on Computer Systems (Rennes, France) (EuroSys ’22). As-
sociation for Computing Machinery, New York, NY, USA, 678–696.
https://doi.org/10.1145/3492321.3519589

[64] The Apache Software Foundation. 2015. ab - Apache HTTP server
benchmarking tool. http://httpd.apache.org/docs/2.4/programs/ab.html.

[65] Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan Chong, and
Adrian Sampson. 2022. Verifying Dynamic Trait Objects in Rust. In

Proceedings of the 44th International Conference on Software Engi-
neering: Software Engineering in Practice (Pittsburgh, Pennsylvania)
(ICSE-SEIP ’22). Association for Computing Machinery, New York,
NY, USA, 321–330. https://doi.org/10.1145/3510457.3513031

[66] Neven Villani. 2023. Tree Borrows. https://github.com/Vanille-N/tree-
borrows/blob/master/full/main.pdf.

[67] Shengye Wan, Mingshen Sun, Kun Sun, Ning Zhang, and Xu He. 2020.
RusTEE: Developing Memory-Safe ARM TrustZone Applications. In
Annual Computer Security Applications Conference (Austin, USA)
(ACSAC ’20). Association for Computing Machinery, New York, NY,
USA, 442–453. https://doi.org/10.1145/3427228.3427262

[68] Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran
Duan, Long Li, Yulong Zhang, Tao Wei, and Zhiqiang Lin. 2019. To-
wards Memory Safe Enclave Programming with Rust-SGX. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (London, United Kingdom) (CCS ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, 2333–2350.
https://doi.org/10.1145/3319535.3354241

[69] Chris Williams. 2017. Microsoft: Can’t wait for ARM to power
MOST of our cloud data centers! Take that, Intel! Ha! Ha! https:
//www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup/.

[70] Yuming Wu, Yutao Liu, Ruifeng Liu, Haibo Chen, Binyu Zang, and
Haibing Guan. 2018. Comprehensive VM Protection Against Untrusted
Hypervisor Through Retrofitted AMD Memory Encryption. In 2018
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA). 441–453. https://doi.org/10.1109/HPCA.2018.00045

[71] Yu-Hsun (Tommy) Chiang. 2022. [MC][AArch64] Enable ’+v8a’ when
nothing specified for MCSubtargetInfo. https://github.com/llvm/llvm-
project/commit/4a31af88a26726f4662a2923618fe45977d09356.

[72] Yu-Hsun (Tommy) Chiang. 2022. v8a as default
aarch64 target. https://github.com/rust-lang/rust/commit/
382dba52ee0c6142d9a3774d735962797c043fab.

[73] Min Hong Yun and Lin Zhong. 2019. Ginseng: Keeping Secrets in
Registers When You Distrust the Operating System. In 26th Annual
Network and Distributed System Security Symposium (NDSS 2019).
San Diego, CA.

[74] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. 2011. Cloud-
Visor: retrofitting protection of virtual machines in multi-tenant cloud
with nested virtualization. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (Cascais, Portugal) (SOSP
’11). Association for Computing Machinery, New York, NY, USA,
203–216. https://doi.org/10.1145/2043556.2043576

[75] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. 2017. HACL*: A Verified Mod-
ern Cryptographic Library. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas,
USA) (CCS ’17). Association for Computing Machinery, New York,
NY, USA, 1789–1806. https://doi.org/10.1145/3133956.3134043

https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://crates.io/crates/happylock
https://crates.io/crates/happylock
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://doi.org/10.1145/3385412.3386036
https://doi.org/10.1145/3385412.3386036
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://github.com/rust-vmm
https://crates.io/crates/cooptex
https://crates.io/crates/deadlocker
https://doi.org/10.1145/3381052.3381326
https://crates.io/crates/jthread
https://clang.llvm.org/docs/CommandGuide/clang.html#cmdoption-ffreestanding
https://clang.llvm.org/docs/CommandGuide/clang.html#cmdoption-ffreestanding
https://doi.org/10.1145/3492321.3519589
http://httpd.apache.org/docs/2.4/programs/ab.html
https://doi.org/10.1145/3510457.3513031
https://github.com/Vanille-N/tree-borrows/blob/master/full/main.pdf
https://github.com/Vanille-N/tree-borrows/blob/master/full/main.pdf
https://doi.org/10.1145/3427228.3427262
https://doi.org/10.1145/3319535.3354241
https://www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup/
https://www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup/
https://doi.org/10.1109/HPCA.2018.00045
https://github.com/llvm/llvm-project/commit/4a31af88a26726f4662a2923618fe45977d09356
https://github.com/llvm/llvm-project/commit/4a31af88a26726f4662a2923618fe45977d09356
https://github.com/rust-lang/rust/commit/382dba52ee0c6142d9a3774d735962797c043fab
https://github.com/rust-lang/rust/commit/382dba52ee0c6142d9a3774d735962797c043fab
https://doi.org/10.1145/2043556.2043576
https://doi.org/10.1145/3133956.3134043

	Abstract
	1 Introduction
	2 Background
	2.1 The Rust Programming Language
	2.2 Arm Virtualization Extensions

	3 Assumptions and Threat Model
	4 Overview
	4.1 KrustVM Overview
	4.2 KMutex
	4.3 Safe Pointer

	5 Securing KrustVM with Rust
	5.1 Rcore Metadata
	5.2 Modularizing Rcore
	5.3 Adopting KMutex and Safe Pointers

	6 Implementation
	6.1 Adapting KVM to KrustVM
	6.2 Integrating Rcore with KVM
	6.3 Compiling KrustVM
	6.4 Contributing the Community

	7 Evaluation
	7.1 Performance Evaluation
	7.2 Safety Analysis

	8 Discussion
	8.1 Security
	8.2 Scalability
	8.3 Portability
	8.4 Verification

	9 Related Work
	10 Conclusions
	Acknowledgments
	References

