
SECvma: Virtualization-based Linux Kernel
Protection for Arm

Teh Beng Yen
National Taiwan University
r12922178@csie.ntu.edu.tw

Joey Li
National Taiwan University

r10944062@csie.ntu.edu.tw

Shih-Wei Li
National Taiwan University
shihwei@csie.ntu.edu.tw

Abstract—A rootkit or an attacker that exploited a single
vulnerability in a monolithic OS kernel like Linux could ob-
tain full authority over the system. We introduce SECvma,
a new system with Linux kernel protection for Arm-based
platforms. SECvma employs a virtualization-based approach to
transparently protect the kernel’s code integrity in its lifetime.
SECvma proposes a new design that extends current Linux
KVM-based confidential virtual machine (CVM) frameworks to
provide standalone Linux kernel protection with modest effort
while preserving the safety of CVMs. SECvma leverages Arm’s
hardware virtualization extensions and addresses their limitations
in supporting kernel protection. SECvma incorporates novel
optimizations to reduce the overhead from the virtualization-
based approach. SECvma significantly enhances Linux’s security
while retaining its performance efficiency and standard features,
including dynamic kernel module loading and kernel page table
isolation (KPTI).

Index Terms—Operating Systems, Security, Virtualization

I. INTRODUCTION

Monolithic OS kernels have become increasingly complex
in satisfying escalating demands for functionality and perfor-
mance. Linux, for example, has been deployed to heteroge-
neous computing environments. Linux has more than a million
lines of code in its codebase. The growing complexity re-
sulted hundreds of new common vulnerabilities and exposures
(CVEs) are reported each year [1]. Monolithic kernels are a
prime target for attackers. An attacker that installed kernel
rootkits or exploited a kernel vulnerability could obtain full
authority over the system to control and access all resources,
compromising user safety.

Arm processors have experienced widespread adoption
across computing platforms, including mobile and embedded
devices, personal computers, and cloud servers [2]–[4]. As
these different Arm-based environments widely adopt Linux,
it is crucial to secure such deployments. This work introduced
SECvma (Kernel Security-Enhanced CVM framework for
Arm) , a new system that enhances the security of Linux-based
Arm platforms. SECvma employs a virtualization-based ap-
proach to protect Linux’s code integrity of its lifetime against
a strong attacker who obtains kernel privileges. SECvma
leverages Arm’s virtualization extensions (VE) features com-
monly available across Arm-based platforms. Employing a
virtualization approach allows SECvma to protect Linux with
minimal instrumentation, preserving Linux’s functionalities.

Confidential computing frameworks have been introduced
to support confidential VMs (CVMs). Mechanisms were em-

ployed to protect CVMs from host attackers who obtain
hypervisor privileges. Recently, Arm has announced hardware
support for Armv9.2 processors to support the Confiden-
tial Compute Architecture (CCA) [5]. However, to our best
knowledge, no existing hardware implementation supports
CCA. The CVM frameworks [6]–[8] that support the existing
Arm hardware rely on a software-based security monitor that
leverages Arm VE to protect CVMs.

We make the following observations about these CVM
frameworks. First, the existing CVM frameworks for Arm
focus on extending KVM to protect CVMs from potentially
compromised hypervisor hosts, which includes their full Linux
kernels. Secondly, the security monitor in these frameworks
provides essential functionalities, such as page table manage-
ment and memory access controls that could be utilized for im-
plementing kernel protection mechanisms. Building on these
observations, we introduced a new system called SECvma that
extends the security monitor in the KVM-based CVM frame-
works for Arm to protect Linux’s code integrity throughout its
lifetime, independent of CVM presence. Specifically, SECvma
protects KVM’s host Linux, the bare-metal Linux that serves
both host applications and VM functionality. SECvma prevents
attackers from modifying the existing kernel code or injecting
new code. It also ensures attackers cannot manipulate page
tables or systems control registers to compromise kernel code
integrity. Further, SECvma protects against kernel rootkits,
ensuring only authenticated kernel modules can be installed
and executed.

To prototype SECvma, we extended our previous work,
SeKVM [7], [8], that hosts CVMs on Arm. The resulting
SECvma prototype extended SeKVM’s security monitor to
enforce code integrity protection of the integrated Linux ker-
nel. SECvma reuses the functionalities of SeKVM’s monitor
to simplify the implementation efforts required for kernel
protection. Our virtualization-based approach avoids intrusive
kernel instrumentation and preserves CVM protection and
compatibility with Linux’s standard features, such as dynamic
module loading and KPTI [9]. The resulting SECvma imple-
mentation requires 4,355 LOC of changes to SeKVM, mostly
to extend its security monitor to provide kernel protection.

The SECvma prototype addresses challenges that Arm VE
hardware limitations pose in supporting kernel protection.
Moreover, a virtualization-based approach could incur a high-
performance overhead [10], [11]. For example, Arm platforms



may present a small TLB — using S2PTs can cause TLB
contention, resulting in performance degradation. Furthermore,
imposing system register protection causes a performance
slowdown in Linux when utilizing features such as KPTI. To
address the performance issues, SECvma incorporates a novel
huge page optimization that addresses the TLB contention
incurred by the extra level of page table translations. In addi-
tion, SECvma optimizes KPTI without compromising register
protection. The evaluation results showed that SECvma retains
Linux’s standard features and performance while enhancing
the security of Linux-based platforms on Arm.

SECvma is available at https://github.com/ae-acsac24-44/
acsac24-paper240-ae.

II. BACKGROUND

Introduction to Arm. Arm introduced Virtualization Ex-
tensions (VE) to support unmodified guest kernels to run in
VMs. Arm VE adds a higher privileged Hyp mode (EL2)
on top of the existing kernel (EL1) and user (EL0) mode to
run hypervisors. Arm VE provides EL2 banked registers to
allow the hypervisor to execute in an isolated address space
from EL0 and EL1. It allows the hypervisor running in EL2
to configure EL2 registers to control the behaviors of the
software running EL0 and EL1. Arm VE supports stage 2
memory translation to support nested paging. Arm provides
an IOMMU, SMMU [12], to address DMA attacks.

When nested paging is effective, Arm’s MMU first walks
the stage 1 page tables (S1PTs) managed by VMs to translate
guest virtual addresses (GVAs) to the intermediate or guest
physical addresses (IPAs/GPAs). It traverses the stage 2 page
tables (S2PTs) managed by the hypervisor to translate the
IPAs/GPAs to the machine physical addresses (PAs). Linux for
Arm64 uses four levels S1PTs and S2PTs: the top level is the
page global directory (PGD). Below that comes the page upper
directory (PUD), page middle directory (PMD), and page table
entry (PTE).

Arm provides two S1PT base registers, TTBR0 EL1 and
TTBR1 EL1. Each register specifies the base physical address
of a PGD, which provides translation for different virtual ad-
dress ranges. In Linux, the former translates user space virtual
addresses, and the latter is used to translate addresses for the
kernel space memory. User space programs use TTBR0 EL1,
while the kernel uses both tables. These two registers also
contain bits that specify the current Address Space Identifier
(ASID) used to tag TLB entries. The Arm VE introduced the
VTTBR EL2 register to store the base of the S2PT. Figure 1
shows the virtual memory configuration used by Linux for
Armv8. Arm supports various translation granules, including
4K, 2M, and 1G bytes (4KB, 2MB, 1GB). On Arm, the
access permission of a CPU’s code execution or a load/store
from/to a given memory region is derived by combining
the permissions set in all page entries of both stages. The
MMU ensures that the CPU’s memory operations satisfy the
permission requirements. For instance, consider a page is set
readable-writable (RW) in the S1PT and read-only (RO) and

perm:pa-pud
perm:pa-pmd

perm:ipa-4kb

perm:pa-pte

perm:ipa-2mb
perm:ipa-1gb

perm:pa-pud
perm:pa-pmd

perm:pa-4kb

perm:pa-pte

perm:pa-2mb
perm:pa-1gb

TTBR1_EL1

TTBR0_EL1

Kernel Page Tables

User Page Tables

Stage 1 
Translation

VTTBR_EL2

Kernel Page Tables

Stage 2 Page Tables

Stage 2 
Translation

Fig. 1: Linux Armv8 Virtual Memory Systems

execute-never (XN) in the S2PT, the resulting permissions of
the translation are RO and XN.

Arm VE traps page faults during stage 2 memory translation
to EL2. This allows the hypervisor to handle the faults caused
by either accesses to unmapped memory regions or permission
violations. Page faults resulting from stage 1 translation are
handled by the OS kernel running in EL1.

Similar to other implementations, Arm’s TLB caches re-
cently accessed page table translations in the MMU. When a
processor makes a memory access, the MMU checks if the
access can be satisfied by a cached translation in the TLB.
If the requested address translation hits the TLB, the MMU
retrieves the translated address from the TLB. If not, the MMU
performs the page table walk to translate the intended address.
The result of the page table walk can be refilled in the TLB
for possible reuse if the walk does not cause a page fault.
Arm’s TLB caches single-stage, two-stage, or partial single-
stage page table walk results. Two-stage paging translation
consumes more entries and stresses the TLB. KVM uses huge
page (2MB or 1GB) mappings to reduce the TLB pressure.

Arm-based Confidential Virtual Machines. The recent
surge in confidential computing aims to isolate confidential
VMs (CVMs) from a compromised hypervisor on the same
host that could encompass a full OS kernel. Confidential
computing frameworks on Arm [5]–[7], [13], [14] rely on a
security monitor to protect CVMs. Arm has announced the
Confidential Compute Architecture (CCA) [5] for Armv9.2
processors. To our knowledge, no existing hardware imple-
mentation supports CCA. To support CVMs on the current
Arm hardware, SeKVM [7], [8] and pKVM [6] retrofit
KVM [15] into an untrusted host that includes the Linux kernel
and a trusted security monitor. The monitor isolates the host
from accessing CVM data. The secure KVM implementations
leverage Arm VE to isolate the security monitor in EL2 to
utilize Arm VE features and deprivilege the host Linux in EL1.
The monitor interposes CVMs’ exits and stores their CPU
registers in its private memory that the host cannot access.
It lets the host Linux manage S1PTs and leverages Arm’s

https://github.com/ae-acsac24-44/acsac24-paper240-ae
https://github.com/ae-acsac24-44/acsac24-paper240-ae


S2PT to restrict the host’s memory access. The output of
S1PTs (denoted as PA) is translated via the host S2PT when
the host is running. The monitor uses an identity map in the
host’s S2PT to translate a PA to an identical address. It tracks
the ownership of every physical page and ensures that the
host’s S2PT only maps to free memory but not CVMs’ private
memory. Finally, the monitor leverages the SMMU to protect
VM memory against DMA attacks.

III. THREAT MODEL AND ASSUMPTION

SECvma protects the code integrity of the Linux kernel.
We assume the system is initially benign but could be later
compromised by a remote attacker, including administrators
with remote access to the hardware. The attacker could exploit
zero-day bugs from the Linux kernel. We assume that the
attacker gains permission to write to arbitrary memory and
aims to overwrite the existing Linux code, emit new code, or
manipulate kernel page tables [16] to modify the access per-
missions or page mapping in page table entries. The attacker
could control devices to perform DMAs to arbitrary memory.
The attacker could also program Arm’s system registers to
control the MMU. Further, we assume the attacker also aims
to install kernel rootkits to run malicious code with kernel
privileges. We also assume the attacker attempts to conduct
the ret2usr attack [17]. Protection against data-only and code-
reuse attacks is out of scope. Mechanisms to secure control
flow integrity [18]–[20] or compartmentalization [21] could
be employed to defend against these attacks. We assume
SECvma’s TCB, KPCore, and hardware is trusted and bug-
free. Denial of service attacks, side channels, and physical
attacks against Linux are excluded from the threat model.
Our work retains CVM protection of existing Arm-based
frameworks. We make the same assumptions about attackers
against CVMs as previous work [6], [7].

IV. SECVMA ARCHITECTURE

To enhance the safety of the Linux kernel running on Arm-
based systems, SECvma protect Linux kernel code integrity
throughout its lifetime. SECvma ensures the kernel only runs
approved code. It prevents injected code or rootkits from
being executed or installed to kernel memory. SECvma further
ensures that attackers cannot corrupt Arm’s system registers
to manipulate Linux’s virtual memory protection mechanisms.
Instead of adopting a clean-slate approach, SECvma aims to
extend the existing secure Linux KVM-based hypervisor that
hosts CVMs for Arm platforms for standalone Linux kernel
code integrity protection. As shown in Figure 2, SECvma
incorporates a trusted KPCore to provide kernel protection.
KPCore encompasses the trusted security monitor from the
KVM-based CVM frameworks. KPCore builds on the moni-
tor’s features to protect Linux’s code integrity.

SECvma leverages Arm VE features to transparently protect
Linux with modest instrumentation so it can maintain com-
patibility with existing Linux functionalities. SECvma isolates
KPCore in EL2 from Linux that runs in a less privileged EL1
mode. KPCore manages S2PTs to restrict Linux’s memory

W⊕X 
Protection

Page Table 
Protection

Kernel Memory Protection

Dynamic Module Loader

Sysregs 
Protection

Host Linux 
Protection

VM 
Protection

Exception Vectors

KPCore

Hardware TEE

Host Linux Kernel Guest Kernel

Host User Guest User

Guest Kernel

Guest User

CVM CVM

Secure Storage

Fig. 2: SECvma System Architecture

init-finish/
uninstall

MEM

(R+W+PXN)

KPGD

(R+XN)

Loadable Kernel Module

MOD_RO

(R+XN)

MOD_TEXT

(R+X)

KRODATA

(R+XN)

KDATA

(R+W+XN)

KTEXT

(R+X)

Linux Code/Data

install

alloc

free
KPUD

(R+XN)

KPMD

(R+XN)

KPTE

(R+XN)

UPGD

(R+XN)

Page Tables

MOD_DATA

(R+W+XN)

Fig. 3: Memory Usage and Access Permissions

access, preventing attackers who control the kernel from
overwriting exiting kernel code or executing unverified kernel
modules. KPCore traps attackers’ illegal memory access and
updates to Arm’s system registers to EL2 to validate and
enforce protection policies.

A full Linux kernel and KPCore are linked into a single
binary. SECvma relies on hardware secure boot such as
Unified Extensible Firmware Interface (UEFI) firmware and
its signing infrastructure with a hardware root of trust. The
SECvma binary is signed and verified using secure storage
keys to guarantee that a trusted SECvma binary is loaded.
SECvma relies on the host Linux to bootstrap the hardware
and install KPCore in EL2 early in the boot process. KPCore
gains full hardware control after the installation completes. It
ensures the Linux host can never turn off its protection.

A. Kernel Memory Protection

SECvma prevents attackers from modifying the existing
code and executing maliciously injected code. SECvma lever-
ages functionalities of the secure KVM to protect the Linux
kernel’s memory. It extends the integrated monitor’s memory
protection features, which restricts the host’s memory access
via the host S2PT, with host kernel memory protection.
Similarly, the same host S2PT is used throughout the host’s
execution in EL0 or EL1. KPCore allocates S2PTs from its
private memory that an attacker cannot access. Specifically,
KPCore enforces (1) memory usage tracking, (2) kernel and
user page table protection, and (3) DMA protection.



1) Memory Usage Tracking: SECvma tracks Linux’s mem-
ory usage and enforces access permissions. Figure 3 shows
SECvma permission assignment to memory with all usage
types. KPCore configures the access permission bits in page
table entries according to the intended types. SECvma lever-
ages S2PT to enforce the permission transparently to Linux.

SECvma enforces the ”W⊕X” policy to achieve Data
Execution Prevention [22] (DEP) at the hypervisor level to
prevent Linux from executing code from writable memory.
SECvma identifies all pages of the kernel text (KTEXT) and
grants them read and execute (R+X) permission. For pages that
belong to the kernel’s data (KDATA) and rodata (KRODATA)
section, SECvma enforces the execute never (XN) permission.
SECvma write-protects memory that contains page tables with
(R+XN) permission. Dynamic module loading poses unique
challenges to the permission enforcement scheme. Linux loads
the module’s contents from the file system to memory and
executes the module. As shown Figure 3, SECvma sets per-
missions accordingly for the module’s text (MOD_TEXT), data
(MOD_DATA), and rodata (MOD_RO) section to allow Linux to
execute an authenticated module. We discuss SECvma ’s sup-
port for loadable kernel modules further in Section IV-B. For
the rest of the memory in the system (MEM), SECvma grants
them read-write and privilege execute-never (R+W+PXN)
permission. These pages contain the memory in the kernel data
allocated from the heap and stack and the memory that Linux
allocates to user applications and services. Enforcing the PXN
permission prevents a privileged attacker from executing code
injected into these regions.

2) Kernel page table protection: Attackers could exploit
memory safety bugs in Linux to corrupt kernel page tables
and tamper with the kernel space memory mappings. KPCore
write-protects all kernel page tables (see Figure 3) in the host
S2PT. Linux’s writes to page tables trap to EL2. KPCore
handles the write faults and validates if the update is legit-
imate; if yes, it performs the write on behalf of Linux to the
respective page table; otherwise, KPCore rejects the illegal
write. SECvma enforces the following policies to protect
kernel page table updates.
P1: Kernel page tables structured as Directed Acyclic
Graph (DAG). SECvma allows Linux to update kernel page
tables during runtime to allocate new kernel page tables (from
NULL to a new mapping) while ensuring their structure
remains a DAG. SECvma allows multiple entries from the
same page table level to point to the same next-level table.
This means a given leaf or non-leaf (except the root) page table
can have multiple parents. In addition, SECvma enforces page
tables from the DAG to follow a strict hierarchical ordering
requirement. As shown in Figure 1, a given non-leaf page table
(e.g., PGD, PUD, PMD) can map to a next-level page table
or to a memory page; the latter concludes a translation. For
the former case, SECvma ensures that entries from a given
non-leaf table only map to a strictly lower-level table in the
hierarchical order. That is, PGD entries could only map to
a PUD, PUD entries could only map to a PMD, and PMD
entries could only map to a PTE.

P2: Restricting Updates to existing kernel page table
entries. SECvma permits Linux updates to existing page table
entries in two cases. First, SECvma only allows Linux to
update status bits, such as the dirty bit in an allocated kernel
page table entry. Updates to status bits do not influence kernel
code safety. Second, SECvma allows Linux to zero out existing
page table entries. SECvma rejects kernel updates to entries
in a leaf or non-leaf page table that alter the address of a
resulting page map or the next-level page table to a different
non-zero value. For instance, SECvma prevents an attacker
from adapting a PMD entry that maps an existing PTE to a
newly allocated PTE that contains malicious entries that map
to executable payloads.
P3: Page table scrubbing. SECvma imposes page table
scrubbing to secure Linux’s page table usages in two cases:
(1) before a table is attached to the existing kernel page table
DAG; (2) after the kernel frees a table. KPCore can interpose
the two cases here because Linux’s updates to page tables trap
to KPCore. The protection is crucial because Linux uses an
untrusted memory allocator to allocate page tables.

We next discuss how the policies secure Linux’s common
operations that require writes to kernel page tables.
Create new mappings. Linux updates kernel page tables to
create a new page mapping, i.e., to support the translation of
an unmapped virtual address to a physical address. Creating
a new mapping involves updating the leaf or non-leaf page
tables. To securely update to the leaf, SECvma enforces P2 so
that the update does not overwrite an existing entry. Updates to
non-leaf page tables could happen if the tables used to perform
the intended address translation are missing – new page tables
are allocated. SECvma ensures the update to a non-leaf page
table does not violate P1 and P2. KPCore then applies P3. It
write-protects and scrubs the next-level page table and updates
the page table entry on behalf of Linux.
Update existing mappings. This operation is recognized when
a non-zero page table entry is updated. SECvma enforces P2
to secure the update.
Delete mappings. Linux zeros a page table entry during an
unmap. Admittedly, although protection against availability is
out of scope in this work, permitting the kernel to zero out
page tables could affect the availability of the compromised
system, as an attacker could wipe out kernel page tables. To
mitigate such page table tampering, for each physical page
containing a page table, KPCore maintains a reference count
that stores the number of times the given page table is pointed
to by an entry from a page table at a higher hierarchy. SECvma
allows multiple different entries from the same page table level
to point to the same next-level page table. KPCore increments
the reference count of the page table page in each map and
decrements the count on each unmap. If the count reaches
zero, the table is not used anymore, and the page can now be
repurposed. KPCore applies P3 to scrub freed page tables.

3) User page table protection: Return to user (ret2usr)
attack [17] allows an attacker to hijack the OS kernel to
execute arbitrary code with kernel privileges. The ret2usr
attacks also affected Linux [23], [24]. The attacker could



load malicious code to user memory and exploit the kernel to
execute the code. To protect against ret2usr attacks, SECvma
enforces PXN permission for pages allocated to user applica-
tions (categorized as MEM in Figure 3).

4) DMA Protection: SECvma extends protection mecha-
nisms from the CVM frameworks to prevent attackers from
performing malicious DMAs to compromise kernel code in-
tegrity. SECvma attaches DMA-capable devices to Arm’s
SMMU to restrict devices’ memory access through their
SMMU page tables. SECvma ensures these page tables do
not map memory that contains kernel code. SECvma ensures
an attacker cannot control the SMMU. KPCore unmaps the
SMMU from the host S2PT to trap-and-emulate Linux’s
MMIO access to the SMMU. This allows KPCore to authorize
updates to the SMMU. KPCore prevents an attacker from
detaching DMA-capable devices from the SMMU, disabling
paging for attached devices, or using a malicious SMMU
page table. Like the CVM implementations [6], [7], KPCore
should expose hypercalls to Linux to allocate and de-allocate
an SMMU translation unit for a device, map/unmap a page to a
device’s SMMU page table, and walk the SMMU page tables.
KPCore allocates SMMU page tables from its private memory
and manages them so that devices cannot access KPCore’s or
Linux’s protected memory.

B. Dynamic Module Loading

Modern OS kernels like Linux support Loadable Kernel
Modules (LKMs). LKMs are commonly used by users to
install driver modules to kernel space memory to run the
driver’s code without recompiling the kernel. SECvma sup-
ports loading Arm64 module binaries and requires no change
to the module’s source. SECvma ensures that the kernel can
only install and execute authenticated modules. Authenticating
loadable modules at runtime represents a challenge. Linux
loads and installs kernel modules from the file system to
memory. These modules consist of symbols unresolved at
compile time and cannot be executed directly. To install a
kernel module, Linux must first allocate memory to accommo-
date a given module, relocate the module’s contents, and then
link and resolve the module’s symbols. Linking and symbol
resolution require modification to the module’s code loaded
to memory. While the traditional hash-based authentication
approach verifies kernel modules before memory installation,
this approach is vulnerable to runtime attacks. An adversary
could compromise module integrity by manipulating Linux’s
loading process to inject malicious code into memory regions
containing previously authenticated modules.

To address the issue, one approach is to task KPCore for
module authentication and installation. An intuitive approach
is to port the existing module installation functionality from
Linux to KPCore or reuse its module signing facility [25].
This guarantees safety but on the other hand, could signifi-
cantly bloat the code size of KPCore. Alternatively, one could
reinvent a new kernel module loading mechanism for KPCore.
However, the clean-slate approach is likely incompatible with
Linux’s existing features.

load to mod_buf

setup mod_mem

invoke auth hvc

(1)

(2)

(3)

remap mod

setup auth stack

authenticate mod

(4)

(5)

(6)

install to mod_mem

mod sym linking

config mod perm

(7)

(8)

(9)

Linux KPCore

Fig. 4: Secure Dynamic Module Loading in SECvma

To support the installation of loadable kernel modules,
SECvma splits module loading to memory from authentication
and relocation. SECvma allows the untrusted host Linux to
load kernel modules from the file system to memory but for-
bids the host from executing the module directly. KPCore only
grants the memory pages that contain the module code execute
permission after the module is authenticated. KPCore ensures
that the code pages are read-only so Linux cannot tamper with
the authenticated module contents. KPCore exposes a set of
hypercalls as depicted in Table IV to Linux to support dynamic
module loading. We detail the other hypercalls in Section V.

KPCore authenticates loadable kernel modules using public
key cryptography. SECvma assumes that the module dis-
tributors (e.g., vendors) signed their modules using a pri-
vate key to produce a signature. The distributors publish
the respective public key and the module’s signature. We
assume the signatures and public keys are downloaded from
the authenticated portals via secure channels to the platform
running SECvma, sealed to the platform’s secure storage, and
loaded into KPCore’s memory before an out-of-scope attack
is conducted. KPCore later uses the public key to authenticate
the module against the module’s respective signature.

The secure module loading support in SECvma consists of
the steps listed from Figure 4.

Module Loading. Linux handles the insmod system call
made by users to install a loadable kernel module. Linux first
copies the contents of the entire module file, including headers
and all of the sections from user space, and stores them in a
memory buffer (denoted as mod_buf) (Step 1 from Figure 4).
The contents from mod_buf are shown in Figure 5.

Linux then allocates a new memory region from the kernel
space, denoted mod_mem. The region consists of four virtually
contiguous areas: code, rodata, ro_after_init, and
writable data. Linux retrieves contents from sections in
the kernel module with the SHF_ALLOC flag set and puts them
to the respective areas in mod_mem according to their access
permission and usage. Linux updates the module’s section
headers to specify the respective section’s runtime addresses.

The mainline Linux resolves and links the symbol addresses
for code and data in mod_mem and executes them at runtime
after the module is installed. In SECvma, Linux makes the
mod_auth hypercall (see Table IV) to KPCore to authenticate
the loaded module before making it executable (enforced PXN
permission). It passes the address to the start of mod_buf,
which points to the ELF header of the module to KPCore via
the first parameter p_hdr of the hypercall. Linux also passes
the addresses of the percpu section data and the architecture-



specific data via percpu and arch parameters, respectively.
The data will be used for relocation.

Pre Module Authentication. KPCore then performs step
(4) from Figure 4 to remap pages from mod_buf to its
address space. This is necessary because KPCore cannot
access Linux’s mod_buf. KPCore runs in the EL2 address
space and cannot access Linux’s EL1 address space. KPCore
gets the module’s contents from the remapped mod_buf (to
EL2). Before authentication, KPCore ensures memory pages
containing the module’s contents (mod_buf and mod_mem)
are read-only to Linux. This prevents an attacker from modi-
fying the module’s contents that KPCore has verified.

Module Authentication. SECvma verifies all executable
sections, read-only data sections, and relocation sections to
ensure the integrity of the module’s code. The latter two
contain essential information, such as the module’s symbol
table to module symbol resolution and linking. As shown in
Table IV, the hypercall mod_auth takes list and size as
the fourth and fifth arguments. list specifies a list of indices
denoting sections in the module’s section table that need to be
verified, whereas size specifies the number of indices.

KPCore allocates a stacking buf to stack the module
contents to be authenticated. It iterates through list and
copies the section’s header, data, or code from the module’s
mod_buf to stacking buf. As shown in Figure 5, the
header1 and code/data for each section are stacked after
each other in stacking buf. KPCore authenticates the
stacked contents against a pre-computed signature derived
from the same stacking layout of the same module. Our
stacking approach eliminates the need to validate each section
individually.

Post Module Authentication. After the module is authen-
ticated, KPCore proceeds to install the authenticated contents
to mod_mem (see Figure 5). Since the allocation of mod_mem
is supplied by the untrusted Linux memory allocator, the pages
in mod_mem could contain injected exploits before the region
was write-protected. Hence, KPCore first scrubs mod_mem.
KPCore then copies the authenticated module contents to the
respective regions in mod_mem. Next, it updates the symbol
table based on the information stored in the module’s verified
section headers. KPCore then performs linking for the kernel
module. It updates symbol references from the code and
data in mod_mem to resolve their runtime addresses. Finally,
KPCore configures the access permissions for pages used
by mod_mem. As shown in Figure 3, KPCore grants the
module’s text region R+X permission and enforces R+W+XN
and R+XN permission for the module’s data and rodata region.
See MOD_TEXT, MOD_DATA, and MOD_RO from Figure 3
about this setting.

C. System Register Protection

In addition to protecting page tables, SECvma prevents
attackers from manipulating Arm’s system registers that con-
trol virtual memory to compromise kernel code integrity.

1We masked members from respective section headers that Linux updated
during module loading at runtime before authentication.

.symtab

.rela.text

.text

ELF header

.text

.symtab

section header[0]
section header[1]

…
section header[n]

…

…

.exit.text

…

mod_buf 
(remapped to EL2)

stacking buf 
(to be authenticated)

ro after init 

rodata 

text 

mod_mem

push contents

(pre auth)

pop contents

(post auth)

data

.text

.exit.text

.symtab

Fig. 5: Module Authentication in SECvma

TABLE I: Virtual Memory System Registers

Category Registers
VMem Translation Registers TCR EL1, SCTLR EL1, MAIR EL1
Hardware-Managed Register ESR EL1
Misc Registers AFSR0 EL0, AFSR1 EL1,

AMAIR EL1, CONTEXTIDR EL1
Runtime-Updated Registers FAR EL1, TTBR0 EL1,

TTBR1 EL1

We categorize these system registers into four categories
shown in Table I. SECvma enforces two policies: ro-after-
boot and write-check against Linux’s updates to these system
registers. SECvma applies the write-check policy to Runtime-
Updated Registers. SECvma enforces the ro-after-boot policy
to registers in the rest of the three categories; the values of
these registers either are predetermined by the OS kernel and
remain unchanged after the kernel boot, or are only updated
by hardware during runtime. KPCore enables the TVM bit
from Arm’s HCR EL2 register to trap every Linux’s write
to the registers in Table I to EL2. This allows KPCore to
transparently interpose every register update and apply the
corresponding strategies to protect different registers.

VMem Translation Registers: The registers in this cate-
gory are vital for security and play a key role in defining MMU
configuration, memory attribute representation, and page table
translation methods. Manipulating these registers arbitrarily
most likely results in kernel panic but could also result
in dangerous impacts. Thus, KPCore ensures Linux cannot
change these registers at runtime.

TCR EL1: The register controls the stage 1 translation
methods of memory accesses from EL0 or EL1. It dictates
the page table format, translation granule, and memory access
attributes of the MMU’s page table walk. Arbitrarily modify-
ing the register will most likely result in crashes. However, an
attacker can manipulate the TG1 bits to change the translation
granule of the kernel page tables and the size of the page tables
used in the translation regime. Linux, by default, uses the
4KB granule. If TCR EL1 is unprotected, an attacker could
change the translation granule and page table size to 64KB.
Since SECvma write-protects 4KB page tables, this renders
60K bytes of the table potentially unprotected, allowing an
attacker to inject malicious entries into the table [26].

SCTLR EL1: This register controls the virtual memory
system, such as paging or the endianness of data access. Both



can lead to unpredictable outcomes if changed during runtime.
Since SECvma could rely on the PXN bit in kernel page table
entries (see Section V-A) to protect memory, an attacker who
disables paging could bypass the protection.

MAIR EL1: This register defines a set of memory attributes
(e.g., cacheability). The attributes are used by stage 1 trans-
lations at EL1. Entries from an S1PT specify an attribute
index to MAIR EL1 to pick an attribute set. Load and store
instructions initiate the MMU page table walk that translates
the virtual address via the page table entry use its speci-
fied attribute. On the other hand, the software programs the
TCR EL1 register to control the memory attribute for page
table access from the MMU [27]. An attacker who gains the
privilege to modify these registers could cause a mismatch of
the attributes specified in MAIR EL1 and TCR EL1. Consider
a scenario in which the attributes mismatch: TCR EL1 speci-
fies that the memory attribute of the MMU page table walk is
set as cacheable, while the attribute set in the page table entry
that maps to the page table is set as non-cacheable. The MMU
accesses and caches the page table entry during a memory
translation. Later on, Linux changes the page table. Because
the memory attribute for the page table is set as non-cacheable,
the change is carried through the main memory. This results in
the cache holding an outdated page table entry. A subsequent
MMU walk will use the stale entry rather than the updated one.
The stock Linux kernel ensures that the memory attributes of
the MMU page table walk and the load and store instruction
accesses to the page table match, such that it can avoid cache
maintenance when updating a page table entry. However, an
attacker who causes an attribute mismatch could compromise
kernel safety. For example, when Linux updates a page table
entry with PXN permission, the MMU may continue using the
outdated permission setting, potentially allowing the execution
of privileged code.

Hardware-Managed Register: The hardware updates
ESR EL1 with exception syndrome information (e.g., excep-
tion causes) at runtime. Linux reads the register to retrieve
such information for exception handling. An attacker who
tampers with the register could result in unpredictable kernel
behavior. Therefore, SECvma forbids Linux’s updates to the
register.

Misc Registers: Registers in the category are used for de-
bugging and tracing or providing supplementary information.
SECvma revokes write access to these registers because Linux
does not currently use these registers.

Runtime-Updated Registers: Unlike the registers in the
other three categories, Linux updates registers in this category
at runtime in the exception vectors and during process context
switches. In the former case, Linux updates the registers to
support Kernel Page Table Isolation (KPTI) [9], a feature
to mitigate Meltdown [28] and Kernel Address Space Lay-
out Randomization (KASLR) [29] bypass. The KPTI im-
plementation uses FAR EL1 as a scratch register [30]. For
TTBR1 EL1, KPTI provides two kernel page tables: K-PGD
for the kernel and UK-PGD for the user space. The latter
only maps to an exception trampoline to perform kernel enter.

When KPTI is enabled, Linux points TTBR1 EL1 to UK-PGD
before returning to the user space. The trampoline from UK-
PGD programs TTBR1 EL1 with the address of K-PGD on
exception enters. During process context switches, Linux first
updates TTBR0 EL1 to a zero page then updates TTBR0 EL1
with the PGD of the next process to switch to. When KPTI
is enabled, it also updates the ASID bits in TTBR1 EL1 with
the ASID of the next process, so the TLB uses the ASID to
tag the address translation results.

FAR EL1 is either updated by hardware (e.g., fault address)
or by the host as a scratch register at runtime during kernel
exit to support KPTI [30]. In the latter case, KPCore traps
Linux’s updates the FAR EL1 and operates on behalf of
Linux. KPCore ensures that FAR EL1 is updated with the
saved value at kernel enter. For page table base registers,
KPCore ensures that Linux can only update TTBR1 EL1 to
the address of either K-PGD or UK-PGD at the entrance to
the kernel or user. Both PGDs are allocated during Linux
boot time. KPCore stores the respective addresses for runtime
checks. For updates to TTBR1 EL1 during process context
switches, KPCore ensures the updates only replace the ASID
bits. Further, KPCore ensures that Linux cannot program
TTBR0 EL1 with the address of K-PGD, UK-PGD, or an
arbitrary address.

V. IMPLEMENTATION

To prototype SECvma, we extended the SeKVM [7],
[8] hypervisor. KPCore leverages the functions provided by
SeKVM’s security monitor, KCore, for page table management
(e.g., walk and set) to update page access permissions bits in
the host S2PT entries to implement the permission enforce-
ment scheme. KPCore extends KCore’s exception handling
framework with permission fault handling features. KPCore
extends SeKVM’s ownership-based memory access control
scheme, which aims to isolate VM memory from the host to
support Linux integrity protection. SECvma leverages the for-
mally verified Ed25519 implementation from the HACL [31]
library integrated with SeKVM to support module authenti-
cation. To facilitate practical deployments, we implemented a
script for developers to compute the signature for their kernel
modules in a stacking fashion described in Figure 5.

As listed in Table II, we added and modified 4,355 LOC in
SeKVM for Linux 4.18 from the open-source artifact [32] to
support SECvma. 3,419 LOC was added to new layer modules.
Among them, 1,458 LOC was dedicated to kernel page table
and static code protection, while 213 LOC was added for
system register protection. 1,748 LOC was added to support
secure kernel module loading. Another 663 LOC was to define
data structures in header files.

273 LOC was added to or modified from SeKVM’s existing
codebase. 69 LOC was added to SeKVM to initialize data
structures and store the information needed for kernel pro-
tection, such as sections’ and kernel PGD’s base address. We
added 34 LOC to SeKVM’s TrapDispatcher module to support
the hypercalls listed in Table IV. 21 and 74 LOC were added
to the FaultHandler and MemAux modules to handle stage 2



TABLE II: SECvma’s Lines of Code

Category Layer LOC Total

New Layer
Modules

Page Table & Static Code
Protection 1,458

3,419System Register Protection 213
Secure Kernel Module
Loading 1,748

SeKVM’s
Layer Modules

Initialization 69

273
TrapDispatcher 34
FaultHandler 21
MemAux 74
PTWalk, NPTWalk, NPTOps 75

C Headers 663 663
Grand Total 4,355

TABLE III: Permission Table2

usage S2 perm S1 perm result perm
KPGD R + XN * R + XN
KPUD R + XN * R + XN
KPMD R + XN * R + XN
KPTE R + XN * R + XN
UPGD R + XN * R + XN
KTEXT R + X * R + X
KDATA R + W + XN * R + W + XN
KRODATA R + XN * R + XN
MOD RO R + XN * R + XN
MOD TXT R + X * R + X
MOD DATA R + W + XN * R + X
MEM R + W + X *+PXN R + W + PXN

permission faults caused by the host Linux’s updates to page
tables. Lastly, we added or modified 75 LOC to three modules,
PTWalk, NPTWalk, and NPTOps, to support the huge page
optimization discussed in Section V-B.

a) Memory Usage and Protection.: SeKVM’s KCore
manages metadata called s2page for each physical memory
page. This metadata stores the ownership information, which
tracks the respective entity that currently owns the respective
page and the sharing information, which logs whether a CVM
shares the page with the Linux host. To support host kernel
protection, SECvma extended s2page with a new usage
field to specify Linux’s current page usage. The column usage
in Table III lists all memory usage types (shown in Figure 3)
in SECvma. In addition, we extended s2page with a new
map count field. It counts the number of times a given
page table is mapped by an entry to secure the page table
free (see Section IV-A2). We record the usage for memory
pages at boot time and store the start physical address and the
size of the ELF sections (e.g., text, data). When initializing
KPCore, SECvma uses the information to set the usage in
s2page. SECvma also traverses the kernel page tables from
the root to all leaves. SECvma assigns the usage to a page
table page according to its hierarchy level (e.g., the kernel
page table root pages are assigned KPGD usage by SECvma).
SECvma enforces the hierarchical order in kernel page tables
(see Section IV-A2) based on the page table usages. SECvma
assigns the UPGD usage to pages used as user PGDs and the
MEM usage to the rest of the memory.

2R: readable; W: writable; X: execute; PX: privilege execute; PXN:
privilege execute never; XN: execute never; *: value set by Linux

After KPCore is successfully installed at EL2, it updates
VTTBR EL2 with host S2PT then enables stage 2 translation
before returning to Linux at EL1. The host S2PT initially
contains no mapping. The kernel’s access to an unmapped
page causes a page fault that traps to EL2. KPCore gets the
faulted address from Arm’s HPFAR EL2 register then queries
a respective s2page of the faulting page. KPCore sets the
access permission to the faulting S2PT entry based on the
page’s usage (from the column S2 perm in Table III).

b) Hypercalls.: KPCore exposes hypercalls listed in Ta-
ble IV to Linux. mod_auth is used for module authentication
that we discussed earlier. We discuss opt_switch_mm in
Section V-B. KPCore exposes two hypercalls to Linux to sup-
port module memory freeing. Both hypercalls, free_init
and free_module, pass one argument: mod_id to KPCore.
mod_id is the module identifier that mod_auth returns to
Linux after successfully installing an authenticated module.
KPCore uses mod_id to identify the pages respective to a
loaded module. KPCore ensures that Linux only uses these
hypercalls to reclaim pages owned by the loaded kernel
module but not protected kernel memory. An error is returned
if an input mod_id does not correspond to an installed kernel
module. After the module is installed, Linux first executes
code from the module’s init section and makes free_init to
free the memory of the init section after the execution finishes.
To handle the hypercall, for each of the pages in the init sec-
tion, KPCore sets their usage to MEM and updates their access
permission in the host S2PT. KPCore performs the same op-
erations for all module’s memory to handle free_module.
Linux makes the hypercall when the user requests a module
uninstall via the rmmod system call. alloc_el0_pgd and
free_el0_pgd were introduced to support user page table
protection. We extended Linux to make these hypercalls when
creating and terminating a process, respectively, to allocate and
free a PGD. In addition to hypercalls in Table IV, SECvma
supports SeKVM’s SMMU hypercalls (see Section IV-A4).

TABLE IV: Kernel Protection Hypercalls

mod auth(p hdr, percpu, arch, list, size)
free init(mod id)
free module(mod id)
opt switch mm(ttbr0, asid)
alloc el0 pgd(addr)
free el0 pgd(addr)

A. Addressing Limitations of Arm VE

PXN bit in S2PT entries. Arm processors without the
FEAT XNX extension [33] do not include a PXN bit in S2PT.
KPCore uses the PXN bit in S2PT if is available. Otherwise,
it enforces the PXN bits in S1PTs (see column S1 perm
from Table III). KPCore sets the PXN bit when updating
kernel page tables on behalf of Linux. For user page tables,
KPCore sets the PXN bit in all PGD entries when serving the
alloc_el0_pgd hypercall to protect against ret2usr attacks.
SECvma write-protects kernel page tables and user PGDs to
prevent an attacker from canceling PXN.



Incomplete Exception Information. Arm VE does not pro-
vide the faulting IPA (that equals the machine’s physical
address in SECvma) when permission fault occurs during
stage 2 translation. For KPCore, the address is essential for
emulating writes to page tables on behalf of Linux. To address
the limitation, KPCore leverages an Arm instruction: at to
translate the faulting virtual address to an IPA when handling
a stage 2 permission fault to the physical address. We ensure
page tables remain static during hardware traversal when
executing the at instruction. First, Linux’s S1PT is marked
read-only; the kernel running on a different CPU cannot mod-
ify page tables while executing at. Second, although Linux
cannot directly modify its S1PT, any modification attempts
trap to KPCore. Upon detecting such a write fault, KPCore
acquires a spinlock before walking and updating Linux’s S1PT,
ensuring these operations are performed atomically.

Further, when unmapping entries of the page tables, Linux
uses Arm’s stxr instruction to zero out page tables. Since
page tables are write-protected, executing stxr causes a
trap to KPCore. Arm VE does not provide information, such
as the source and target register operands about a trapping
stxr (in the ESR EL2 register) due to a permission fault.
To overcome the limitation, KPCore fetches and decodes the
stxr instruction from memory via the faulting PC stored in
Arm’s ELR EL2 register and gets the register operands.

B. Optimizations

a) Huge Page Optimization.: To achieve memory access
control at the finest granule, SECvma uses the 4KB translation
granule in the host S2PT by default. This approach incurs
a significant performance slowdown on Arm hardware with
a small TLB. To address the slowdown, we make pages
that share the same S2 permission in Table III locate within
the same 2MB aligned regions. This allows KPCore to map
these pages in S2PTs with huge (2MB) pages to reduce
TLB pressure. We modified Linux such that memory pages
other than those with their usage set to MEM are backed by
2MB mappings in the host S2PT. To further reduce the TLB
pressure, we introduced an additional optimization for KPCore
to map all MEM memory pages with 1GB mappings in the host
S2PT if the given 1GB region of physical memory contains
no 2MB pages with different usage.

We modified Linux’s linker script to ensure all kernel code
and data are loaded to separated 2MB aligned regions. This
also ensures kernel code and data do not co-locate on the
same page. Linux, by default, allocates kernel pages from the
kernel heap. We cannot map the heap memory in the host
S2PT with 2MB pages because 4KB pages with different S2
permissions could co-locate within the same 2MB region. To
incorporate huge page optimization, we introduced a buddy
memory allocator to Linux to allocate 4KB-aligned pages from
2MB-aligned memory pools that share the same permission in
the host S2PT. The enlightened Linux allocates kernel page
tables from the pool with the R+XN permission in the host
S2PT. The mappings in S2PTs are transparent to Linux. We
did not change Linux’s page granularity from 4KB to 2MB

Kernbench

Hackbench

TCP_STREAM

TCP_MAERTS
TCP_RR

Apache

Memcached
MySQL

MongoDB0.0

0.5

1.0

1.5

2.0

2.5
SeKVM
SECvma
OPT-SECvma (4KB MEM mappings)
OPT-SECvma (huge MEM mappings)

Fig. 6: Application Performance - Linux Host

and thus incurring no fragmentation or pressure in process
creation and caching.

b) Optimize System Register Traps.: Without compro-
mising security, we optimized system register protection in
two scenarios to reduce traps to KPCore: (1) kernel/user enters
and exits, and (2) process context switches. For (1), as men-
tioned earlier, Linux’s KPTI implementation uses FAR EL1
as scratch registers [30]. Due to register protection, the writes
to FAR EL1 result in traps to EL2 in SECvma. To avoid the
trap, we replaced the write to FAR EL1 with TPIDRRO EL0.
Note that this incurs no safety issue. Linux already uses
TPIDRRO EL0 as a scratch register. To further guarantee
security, before returning to userspace, KPCore zeros the
value of TPIDRRO EL0 after use. For (2), we introduced
a hypercall, opt_switch_mm to batch the three updates
made by Linux to TTBR0 EL1 and TTBR1 EL1 to KPCore
(see Section IV-C). Linux passes the base address of the next
process’ PGD, and its ASID as arguments to the hypercall.

VI. EVALUATION

We evaluated the performance of the mainline Linux/KVM,
SeKVM, and SECvma on an HP Moonshot m400 server
with an 8-core 64-bit Armv8-A 2.4 GHz Applied Micro
Atlas SoC, 64 GB of RAM, a 120 GB SATA3 SSD, and
a Dual-port Mellanox ConnectX-3 10GbE NIC. For client-
server workloads, clients ran on another m400 machine and
connected to the server via a 10 GbE. We tested application
benchmarks running on the host Linux kernel on the bare-
metal and VMs on the m400 hardware. All configurations use
the Linux 4.18 kernel and Ubuntu 20.04. The kernels were
compiled with standard protection features, including KPTI.
The bare-metal configurations use all hardware available. All
VMs were configured with 4 virtual CPUs and 12 GB of RAM.
All VMs used paravirtualized I/O. They were configured with
its standard vhost virtio network and with cache=none for
its virtual block storage devices [34], [35].

Figure 6 presents the performance of applications running
on the Linux host on SECvma and SeKVM. The results are
normalized against those of the same applications running
on the mainline Linux v4.18 (lower is better). The applica-
tions used the configuration listed in Table V. We adopted
four configurations: (1) SeKVM, (2) unoptimized SECvma



TABLE V: Description of benchmark application

Name Description
Kernbench Compilation of the Linux 4.18 kernel using allno-

config for Arm with GCC 9.3.0.
Hackbench Hackbench [36] using Unix domain sockets and 100

process groups running in 500 loops.
Netperf Netperf v2.6.0 [37] running the netserver on the

server and the client with its default parameters in
three modes: TCP STREAM (receive throughput),
TCP MAERTS (send throughput), and TCP RR (la-
tency).

Apache Apache v2.4.41 server handling 100 concurrent re-
quests from two remote ApacheBench [38] v2.3
clients on bare-metal and one for a VM, serving
the 41 KB index.html of the GCC 4.4.7 manual.
Measured the number of requests handled by the
Apache server per second.

Memcached Memcached v1.5.22 using the memtier benchmark
[39] v1.2.3 with its default parameters, running 8
threads in the bare-metal experiment, 4 threads for
the VM experiment.

MySQL MySQL v8.0.39 running SysBench v.1.0.18 using
the default configuration with 100 parallel transac-
tions, tables=10, and table-size=100000.

MongoDB MongoDB server v4.4.0 handling requests from a
remote YCSB [40] v0.17.0 client running workload
A with 16 concurrent threads, readcount=10000 and
operationcount=500000

Kernbench

Hackbench

TCP_STREAM

TCP_MAERTS
TCP_RR

Apache

Memcached
MySQL

MongoDB0.0

0.5

1.0

1.5

2.0

2.5
SeKVM
OPT-SECvma (4KB MEM mappings)

Fig. 7: Application Performance - VM

(SECvma), (3) OPT SECvma (4KB MEM mappings), and (4)
OPT SECvma (huge MEM mappings). Configurations (3) and
(4) both incorporate the system registers optimization and
2MB mappings in the host S2PT for memory that has a
different usage from MEM; however, in the host S2PT, (3)
maps MEM memory with 4KB mappings, while (4) maps MEM
memory with both 2MB and 1GB mappings.

The results show that the unoptimized SECvma could
significantly reduce performance slowdown in application per-
formance. We found that the overhead stems from register
protection and the extra stage of memory translation used in
memory protection. The former was due to the extra traps
incurred when the unoptimized SECvma updates the protected
system registers during task context switches and kernel/user
space entrance and exit to support KPTI. For the latter, the
processors on the m400 machine have a tiny TLB [41].
The unoptimized SECvma employed 4KB mappings for all
memory in the host S2PT and resulted in high TLB contention.

SECvma’s overhead is more significant in Hackbench,

TABLE VI: Module Performance

Linux 4.18 SECvma
Name File Size insmod rmmod insmod rmmod
crypto virtio.ko 26.5 KB 3ms 16ms 62ms 16ms
xfs.ko 1.06 MB 17ms 64ms 98ms 70ms

TCP RR, Apache, and Memcached. All these applications
include system calls in critical paths and thus suffer from the
overhead resulting from register protection in KPTI. Hack-
bench forks numerous processes to perform IPC via Unix
pipes. Compared to others, Hackbench involves more frequent
processes and kernel/user switches, suffering higher overhead
from register protection. SECvma’s system register optimiza-
tions effectively improved the performance of these workloads.
Hackbench exhibited a much higher memory footprint than
other applications. Thus, SECvma’s huge page optimization
for MEM memory reduced the overhead significantly in Hack-
bench for more than 40% (OPT-SECvma (4KB vs huge MEM)).
SECvma also outperformed SeKVM, which suffered from
TLB contention due to its adoption of a 4KB mapping scheme
in host S2PT.

Figure 7 presents the performance of application workloads
running in VMs on SeKVM and the optimized SECvma
with 4KB MEM mappings. The results are normalized to the
performance of VMs running on the mainline KVM v4.18
using the same configuration. Note that the optimized SECvma
outperformed SeKVM. The performance improvement is more
noticeable in I/O bound workloads. On KVM, the host Linux
and QEMU provide I/O virtualization. The host’s efficiency
is critical to VM performance. SECvma reduced the stage
2 translation overhead during the host’s execution with huge
page mappings, resulting in optimized VM performance.

insmod and rmmod Performance. We evaluated the per-
formance of executing the insmod and rmmod commands
on SECvma versus the mainline Linux. We tested two kernel
modules: a cryptographic module (virtio_crypto.ko)
and a file system driver (xfs.ko). Table VI shows the
modules’ respective sizes. As shown in Table VI, insmod
and rmmod on SECvma took much longer than on Linux.
Due to the memory access overhead from module authentica-
tion, insmod suffered a higher overhead than rmmod. The
slowdown is a trade-off for much-enhanced security. insmod
and rmmod are infrequent. We believe the resulting overhead
(far less than 1s) should not affect user experience in practice.

A. Security Analysis

SECvma ensures that an attacker who gains kernel privi-
leges cannot modify the metadata and S2PTs stored in KP-
Core’s private memory. An attacker from the kernel mode
cannot access or modify EL2’s registers that KPCore uses to
enable protection. For example, an attacker cannot modify the
HCR EL2 register to disable stage 2 memory translation or
trapping on writes to system registers.

We analyzed Linux’s CVEs in the past eight years and iden-
tified a class of Linux CVEs that enable out-of-bound writes
to kernel memory. Many of these CVEs are from the kernel’s



device drivers [42]–[49]. Some others were bugs reported in
Linux’s network subsystem [50]–[53] and file systems [54]–
[56]. With an equivalent implementation of SECvma for
vulnerable kernel versions and platforms, SECvma effectively
protects Linux’s code integrity against these malicious writes.
SECvma prevents an attacker that exploits these vulnerabilities
from modifying kernel memory that contains approved code,
either from Linux’s binary or an authenticated kernel module.

An attacker could also exploit vulnerabilities that enable
out-of-bound memory writes to (1) emit malicious code to
memory or (2) corrupt page tables. For (1), an attacker could
output code to kernel heap and stack or a user application’s
memory. The latter could be part of the efforts to carry out the
ret2usr attack [17]. SECvma cannot prevent code emission to
writable memory (e.g., memory with the MEM type) regions.
However, it enforces the PXN permission for these writable
pages to prevent attackers from executing the emitted code.

For (2), an attacker could manipulate kernel page tables to
create new entries or modify existing entries. SECvma ensures
that an attacker cannot disrupt the page table ordering and lead
to a faulty translation (Policy P1). For example, this prevents
an attacker from inserting an existing PTE into the PUD,
leading the MMU to treat the PTE as a PMD. An attacker can
also modify the existing page table entries. For instance, she
could cancel permission bits to disable Linux’s DEP protection
at the kernel page tables. Furthermore, an attacker could remap
a page table entry to new memory pages or page tables.
SECvma eliminates these arbitrary page table modifications
(Policy P2). Finally, SECvma scrubs newly allocated page
tables (Policy P3) before a map. This prevents an attacker from
creating a new entry that maps to a page table that contains
malicious entries that map to executable payloads to perform
code injection.

In addition to the CVEs that compromise Linux’s spatial
memory safety, CVE-2023-6238 [57], a bug in Linux’s NVM
Express driver allows an unprivileged user to let the device
perform DMA to overwrite kernel memory. The attack cannot
compromise kernel code integrity on SECvma. DMA writes
are restricted to data buffers but not memory that contains
kernel code on SECvma.

An attacker could corrupt system registers to compromise
kernel code integrity. She could update the page table base
registers to specify a customized page table root that maps to
malicious executable payloads or contains unsafe permission
settings that mismatch with W⊕X. An attacker could also
manipulate VMem Translation system registers to compro-
mise kernel safety. She could corrupt TCR EL1 to bypass
SECvma’s page table protection or SCTLR EL1 to disable
paging to cancel SECvma’s PXN protection. Further, she
could control MAIR EL1 and TCR EL1 to cause a mismatch
of page table translation settings to potentially bypass page
permission settings. An attacker could cause cache inco-
herence in page table walks to trick the MMU into using
outdated page table entries with unsafe permission settings. As
discussed in Section IV-C, SECvma traps the kernel’s writes to
system registers to prevent the above malicious updates from

compromising Linux’s code integrity.
The Linux Integrity Measurement Architecture (IMA) main-

tains the integrity of the system’s files by measuring and
attesting to the integrity of files before they are accessed.
IMA can ensure the integrity of module files before loading.
However, a compromised Linux could alter the module file
put into memory during module loading or load a malicious
module instead of the authenticated one. SECvma addresses
such TOCTTOU issue by tasking KPCore to authenticate the
module contents loaded to memory at module installation.

VII. LIMITATIONS AND FUTURE WORK

Other than dynamically installing kernel modules, SECvma
does not allow new code to be added to the kernel space.
Therefore, SECvma has to be extended to permit the execu-
tion of verified eBPF code [58]. SECvma currently supports
executing static eBPF code in interpreter mode. In the future,
we plan to extend SECvma to support eBPF’s JIT mode.
SECvma current cannot enable the OPT-SECvma (huge MEM
mappings) optimization when running confidential VMs. VM
memory allocated from the region with MEM usage fragments
the huge page mappings in the host S2PT. As shown in
Figure 7, SECvma still outperformed SeKVM without such
optimization. The optimization is left for future work. In
addition, we plan to upgrade SECvma to a more recent Linux
version. The changes required for SECvma and SeKVM to
mainline Linux are self-contained and require no intrusive
changes. As long as SeKVM’s patch is ported to a new Linux
version, incorporating SECvma’s kernel protection features
should require modest porting efforts.

KPCore builds on SeKVM’s formally verified KCore to
support host kernel protection. SeKVM adopts a modular
verification approach. Functions from modules can be verified
independently to produce composable proofs. We minimized
changes to existing functions from KCore to retain the ex-
isting proofs. Most of our updates to SeKVM are in the
additional unverified modules. Our extensions are orthogonal
to SeKVM’s existing VM protection features. We thus expect
the addition to preserve SeKVM’s verified VM security guar-
antees. In the future, we plan to leverage the Spoq [59] to
automate code verification for KPCore.

pKVM [6] adopts a similar Arm VE-based approach to
SeKVM, relying on a security monitor to support CVMs on
KVM. We expect that SECvma’s design applies to pKVM
to enable the host Linux kernel protection Like SeKVM,
pKVM manages a host S2PT to isolate the host Linux’s
access to CVM memory. pKVM uses the unused bits in S2PT
entries to track memory ownership and sharing information.
SECvma should extend the mechanism to track the usage
types (e.g., incorporate extra metadata) and manage the host
S2PT accordingly to protect kernel memory. Further, pKVM
should be extended to handle permission faults caused by
Linux’s updates to kernel page tables and enforce page table
protection. In addition, we could utilize SECvma’s approach
to extend Arm-based type-1 hypervisors [60], [61] to leverage



VE features to secure the OS kernels running on the integrated
privileged VM (e.g., Dom0) and enhance their safety.

VIII. RELATED WORK

Previous work relies on a trusted hypervisor in the TCB to
protect a monolithic OS kernel. Some relies on a hypervisor
to detect kernel rootkits [62]–[66] in VMs. Others [67], [68]
rely on the hypervisor [61] to isolate an OS kernel from
untrusted components. Microsoft’s Hypervisor-protected Code
Integrity [69] framework relies on a full Windows hypervisor
to protect the code integrity of the Windows OS kernel. These
systems have a much larger TCB than SECvma.

Secvisor [11] relies on a tiny hypervisor that leverages x86’s
virtualization extensions to protect Linux’s code integrity.
Unlike SECvma, Secvisor incurred high performance overhead
to hosted applications (2.19x in the worst case). Secvisor
allows Linux to install kernel modules at runtime at the user’s
discretion. Unlike SECvma, Secvisor does not authenticate the
contents of a loaded kernel module before an installation.

Sprobes [70] and TZ-RKP [10] rely on privileged firmware
that leverages Arm’s TrustZone extension to protect Linux.
Unlike Arm VE, TrustZone does not provide features for a
secure world software to proactively interpose and monitor
sensitive system events. For instance, TrustZone does not
support trap-and-emulate against Linux’s accesses to write-
protected memory (e.g., page tables) or writes to sensitive
system registers. The TrustZone-based approaches thus require
instrumentation to Linux to make secure monitor calls (SMCs)
to the monitor to validate and perform the operation. The in-
strumentation efforts incur portability and compatibility issues
with updated Linux versions. Unlike these systems, SECvma
requires modest instrumentation to Linux: (1) make hypercalls
to load/unload kernel modules and allocate/free user PGDs, (2)
enable ret2usr protection, and (3) adopt optimizations.

KNOX [71] provides the Real-time Kernel Protection
(RKP) [72] mechanism to ensure the code integrity of the
Linux kernel integrated with the Android OS. The RKP
employs a security monitor, either a dedicated hypervisor or a
TrustZone-based monitor, depending on the device model, to
protect the kernel. KNOX is proprietary. Previous efforts that
reversed-engineered the RKP hypervisor [26] disclosed that
it leverages Arm VE to support kernel memory protection.
Similarly to SECvma, the RKP hypervisor runs in Arm’s EL2
mode and uses S2PTs to protect memory. RKP also validates
writes to virtual memory control system registers and secures
dynamic module loading.

In contrast to KNOX’s clean-slate approach, SECvma pro-
posed to extend the existing CVM frameworks for Arm to sig-
nificantly reduce the implementation complexity for protecting
Linux’s code integrity. Additionally, unlike SECvma, KNOX
does not support CVMs. Further, compared to SECvma,
KNOX does not support module authentication during dy-
namic module loading to memory. RKP could be vulnerable
to a TOCTTOU attack that bypasses module authentication,
allowing an attacker to install malicious modules to executable

kernel memory (see Section VI-A). We cannot comprehen-
sively compare SECvma’s feature set with KNOX because
KNOX is not opened source. At the time of writing, neither
detailed design documentation nor performance benchmarks
for KNOX are publicly available.

Nested kernel [73] splits the OS kernel into a trusted
nested and a comprehensive outer kernel. Instead of adopting
a virtualization-based approach, the nested kernel leverages
Intel’s hardware features, i.e., CR0’s WP bit and privilege
rings, to protect the integrity of the outer kernel’s memory,
prevent unauthorized updates to the kernel page tables and
tamper with kernel data and code integrity. The approach is
inapplicable to SECvma. Hardware features like the WP bit
are unavailable on Arm.

IX. CONCLUSION

This work introduced SECvma, a new system that employs
a virtualization-based approach to protect the code integrity of
Linux on Arm-based platforms. SECvma ensures a privileged
attacker cannot tamper with the existing kernel code or load
unauthenticated kernel modules. SECvma proposed a new de-
sign that extends Arm’s existing CVM framework to simplify
development efforts while preserving CVM protection. The
SECvma prototype extended a KVM-based secure hypervisor
for Arm to achieve robust kernel security and retains Linux’s
performance and functionality.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful
feedback. This research was supported by the National Science
and Technology Council of Taiwan under research grants 112-
2628-E-002-027- and 113-2628-E-002-030-.

REFERENCES

[1] J. Li, S. Miller, D. Zhuo, A. Chen, J. Howell, and T. Anderson,
“An incremental path towards a safer os kernel,” in Proceedings of
the Workshop on Hot Topics in Operating Systems, ser. HotOS ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
183–190. [Online]. Available: https://doi.org/10.1145/3458336.3465277

[2] D. Boggs, G. Brown, N. Tuck, and K. Venkatraman, “Denver: Nvidia’s
first 64-bit arm processor,” IEEE Micro, vol. 35, no. 2, pp. 46–55, 2015.

[3] C. Williams, “Microsoft: Can’t wait for ARM to power MOST
of our cloud data centers! Take that, Intel! Ha! Ha!” The Reg-
ister, Mar. 2017, https://www.theregister.co.uk/2017/03/09/microsoft
arm server followup.

[4] Amazon Web Services, “Introducing Amazon EC2 A1 Instances
Powered By New Arm-based AWS Graviton Processors,” Nov.
2018, https://aws.amazon.com/about-aws/whats-new/2018/11/
introducing-amazon-ec2-a1-instances.

[5] ARM Ltd., “Introducing Arm Confidential Compute Architecture Ver-
sion 1,” May 2022, https://developer.arm.com/documentation/den0125/
0100/What-is-Arm-CCA-.

[6] Jake Edge, “KVM for Android,” LWN.net, Nov. 2020, https://lwn.net/
Articles/836693/.

[7] S.-W. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui, “A Secure and Formally
Verified Linux KVM Hypervisor,” in Proceedings of the 2021 IEEE
Symposium on Security and Privacy (IEEE S&P 2021), May 2021.

[8] ——, “Formally Verified Memory Protection for a Commodity Mul-
tiprocessor Hypervisor,” in Proceedings of the 30th USENIX Security
Symposium (USENIX Security 2021), Aug. 2021.

[9] J. Corbet, “The current state of kernel page-table isolation,” https://lwn.
net/Articles/741878/, Dec. 2017.

https://doi.org/10.1145/3458336.3465277
https://www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup
https://www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances
https://developer.arm.com/documentation/den0125/0100/What-is-Arm-CCA-
https://developer.arm.com/documentation/den0125/0100/What-is-Arm-CCA-
https://lwn.net/Articles/836693/
https://lwn.net/Articles/836693/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/


[10] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh,
J. Ma, and W. Shen, “Hypervision across worlds: Real-time kernel
protection from the arm trustzone secure world,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 90–102. [Online]. Available: https:
//doi.org/10.1145/2660267.2660350

[11] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity oses,” in Pro-
ceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles, 2007, pp. 335–350.

[12] ARM Ltd., “ARM System Memory Management Unit
Architecture Specification - SMMU architecture version 2.0,”
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/
IHI0062D c system mmu architecture specification.pdf, Jun. 2016.

[13] S.-W. Li, J. S. Koh, and J. Nieh, “Protecting cloud virtual machines
from commodity hypervisor and host operating system exploits,” in
Proceedings of the 28th USENIX Security Symposium (USENIX Security
2019), Santa Clara, CA, Aug. 2019, pp. 1357–1374.

[14] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell,
“Design and verification of the arm confidential compute architecture,”
in 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). Carlsbad, CA: USENIX Association,
Jul. 2022, pp. 465–484. [Online]. Available: https://www.usenix.org/
conference/osdi22/presentation/li

[15] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the
Linux Virtual Machine Monitor,” in Proceedings of the 2007 Ottawa
Linux Symposium (OLS 2007), Ottawa, ON, Canada, Jun. 2007.

[16] “Mwr labs. windows 8 kernel memory protections
bypass,” http://labs.mwrinfosecurity.com/blog/2014/08/15/
windows-8-kernel-memoryprotections-bypass, 2014.

[17] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis,
“kGuard: Lightweight kernel protection against Return-to-User
attacks,” in 21st USENIX Security Symposium (USENIX Security
12). Bellevue, WA: USENIX Association, Aug. 2012, pp.
459–474. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/kemerlis

[18] J. Corbet, “Control-flow integrity in 5.13,” https://lwn.net/Articles/
856514/, May 2021.

[19] ——, “Shadow stacks for 64-bit Arm systems,” https://lwn.net/Articles/
940403/, Aug. 2023.

[20] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained control-flow
integrity for kernel software,” in 2016 IEEE European Symposium on
Security and Privacy (EuroS&P), 2016, pp. 179–194.

[21] D. P. McKee, Y. Giannaris, C. Ortega, H. Shrobe, M. Payer, H. Okhravi,
and N. Burow, “Preventing kernel hacks with hakcs,” Proceedings 2022
Network and Distributed System Security Symposium, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:248225227

[22] Microsoft, “Data Execution Prevention,” Feb. 2022. [Online].
Available: https://learn.microsoft.com/en-us/windows/win32/memory/
data-execution-prevention

[23] “Common Vulnerabilities and Exposures - CVE-2009-1897,” https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897, 2009.

[24] “Common Vulnerabilities and Exposures - CVE-2009-2908,” https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2908, 2009.

[25] “Kernel module signing facility,” https://www.kernel.org/doc/html/v4.
18/admin-guide/module-signing.html.

[26] “Lifting the (hyper) visor: Bypassing samsung’s real-time
kernel protection,” https://googleprojectzero.blogspot.com/2017/02/
lifting-hyper-visor-bypassing-samsungs.html.

[27] A. Limited, “What memory attribute do I set for page table access from
MMU Page Table Walk unit,” https://developer.arm.com/documentation/
ka005348/latest/, Jan. 2024.

[28] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[29] “Kernel address space layout randomization,” https://lwn.net/Articles/
569635/, 2013.

[30] “arm64: entry: Hook up entry trampoline to exception vectors,”
https://patchwork.kernel.org/project/linux-arm-kernel/patch/
1512059986-21325-14-git-send-email-will.deacon@arm.com/, 2017.

[31] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“Hacl*: A verified modern cryptographic library,” in Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1789–1806.

[32] Columbia University, “SOSP 21: Artifact Evaluation: Verifying
a Multiprocessor Hypervisor on Arm Relaxed Memory
Hardware,” https://github.com/VeriGu/usenix-ae-linux/tree/
bf0e5d0a4ec4f2b6d2524a5c8cd86e12cc0f6e0e, Sep. 2021.

[33] Arm Ltd. (2022) Arm® Architecture Reference Manual for A-profile
architecture - DDI 0487I.a.

[34] “Tuning KVM,” http://www.linux-kvm.org/page/Tuning KVM [Ac-
cessed: Dec 16, 2020].

[35] S. Hajnoczi, “An Updated Overview of the QEMU Storage Stack,” in
LinuxCon Japan 2011, Yokohama, Japan, Jun. 2011.

[36] “Improve hackbench,” http://people.redhat.com/mingo/cfs-scheduler/
tools/hackbench.c, 2008.

[37] R. Jones, “Netperf,” https://github.com/HewlettPackard/netperf, Ac-
cessed 2023.

[38] “Apache http server benchmarking tool,” http://httpd.apache.org/docs/2.
4/programs/ab.html.

[39] R. Labs, “Memtier benchmark,” https://github.com/RedisLabs/memtier
benchmark, Accessed 2024.

[40] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[41] 7-CPU.COM, “Applied micro x-gene,” https://www.7-cpu.com/cpu/
X-Gene.html [Accessed: Apr 28, 2021].

[42] “Common Vulnerabilities and Exposures - CVE-2021-28660,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28660, 2021.

[43] “Common Vulnerabilities and Exposures - CVE-2019-17666,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17666, 2019.

[44] “Common Vulnerabilities and Exposures - CVE-2019-9500,” https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9500, 2019.

[45] “Common Vulnerabilities and Exposures - CVE-2023-3090,” https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-3090, 2023.

[46] “Common Vulnerabilities and Exposures - CVE-2019-10126,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10126, 2019.

[47] “Common Vulnerabilities and Exposures - CVE-2022-47521,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47521, 2022.

[48] “Common Vulnerabilities and Exposures - CVE-2016-3955,” https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3955, 2016.

[49] “Common Vulnerabilities and Exposures - CVE-2020-12654,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12654, 2020.

[50] “Common Vulnerabilities and Exposures - CVE-2019-17133,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17133, 2019.

[51] “Common Vulnerabilities and Exposures - CVE-2022-27666,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27666, 2022.

[52] “Common Vulnerabilities and Exposures - CVE-2023-31436,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-31436, 2023.

[53] “Common Vulnerabilities and Exposures - CVE-2023-32233,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-32233, 2023.

[54] “Common Vulnerabilities and Exposures - CVE-2019-19814,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19814, 2019.

[55] “Common Vulnerabilities and Exposures - CVE-2022-48423,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-48423, 2022.

[56] “Common Vulnerabilities and Exposures - CVE-2019-19378,” https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19378, 2019.

[57] “Common Vulnerabilities and Exposures - CVE-2023-6238,” https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-6238, 2023.

[58] D. Calavera and L. Fontana, Linux Observability with BPF: Advanced
Programming for Performance Analysis and Networking. O’Reilly
Media, 2019.

[59] X. Li, X. Li, W. Qiang, R. Gu, and J. Nieh, “Spoq: Scaling Machine-
Checkable systems verification in coq,” in 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23). Boston,
MA: USENIX Association, Jul. 2023, pp. 851–869. [Online]. Available:
https://www.usenix.org/conference/osdi23/presentation/li-xupeng

[60] C. van Schaik, S. Gamiz, and J. Huang. Gunyah hypervisor.
[Online]. Available: https://github.com/quic/gunyah-hypervisor?tab=
readme-ov-file

[61] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP 2003), Bolton Landing, NY, Oct. 2003, pp. 164–177.

https://doi.org/10.1145/2660267.2660350
https://doi.org/10.1145/2660267.2660350
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf
https://www.usenix.org/conference/osdi22/presentation/li
https://www.usenix.org/conference/osdi22/presentation/li
http:// labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memoryprotections-bypass
http:// labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memoryprotections-bypass
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kemerlis
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kemerlis
https://lwn.net/Articles/856514/
https://lwn.net/Articles/856514/
https://lwn.net/Articles/940403/
https://lwn.net/Articles/940403/
https://api.semanticscholar.org/CorpusID:248225227
https://learn.microsoft.com/en-us/windows/win32/memory/data- execution-prevention
https://learn.microsoft.com/en-us/windows/win32/memory/data- execution-prevention
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1897
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2908
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2908
https://www.kernel.org/doc/html/v4.18/admin-guide/module-signing.html
https://www.kernel.org/doc/html/v4.18/admin-guide/module-signing.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://developer.arm.com/documentation/ka005348/latest/
https://developer.arm.com/documentation/ka005348/latest/
 https://lwn.net/Articles/569635/
 https://lwn.net/Articles/569635/
 https://patchwork.kernel.org/project/linux-arm-kernel/patch/1512059986-21325-14-git-send-email-will.deacon@arm.com/
 https://patchwork.kernel.org/project/linux-arm-kernel/patch/1512059986-21325-14-git-send-email-will.deacon@arm.com/
https://github.com/VeriGu/usenix-ae-linux/tree/bf0e5d0a4ec4f2b6d2524a5c8cd86e12cc0f6e0e
https://github.com/VeriGu/usenix-ae-linux/tree/bf0e5d0a4ec4f2b6d2524a5c8cd86e12cc0f6e0e
http://www.linux-kvm.org/page/Tuning_KVM
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://github.com/HewlettPackard/netperf
http://httpd.apache.org/docs/2.4/programs/ab.html 
http://httpd.apache.org/docs/2.4/programs/ab.html 
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://www.7-cpu.com/cpu/X-Gene.html
https://www.7-cpu.com/cpu/X-Gene.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28660
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28660
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17666
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17666
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9500
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9500
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-3090
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-3090
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10126
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10126
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47521
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-47521
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3955
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3955
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12654
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-12654
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17133
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17133
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27666
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-27666
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-31436
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-31436
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-32233
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-32233
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19814
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19814
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-48423
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-48423
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19378
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19378
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-6238
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-6238
https://www.usenix.org/conference/osdi23/presentation/li-xupeng
https://github.com/quic/gunyah-hypervisor?tab=readme-ov-file
https://github.com/quic/gunyah-hypervisor?tab=readme-ov-file


[62] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
vmm-based ‘out-of-the-box’semantic view,” in 14th ACM Conference
on Computer and Communications Security (CCS), Alexandria, VA
(November 2007), vol. 10, no. 1315245.1315262, 2007.

[63] N. L. Petroni Jr and M. Hicks, “Automated detection of persistent kernel
control-flow attacks,” in Proceedings of the 14th ACM conference on
Computer and communications security, 2007, pp. 103–115.

[64] X. Wang, J. Zhang, A. Zhang, and J. Ren, “Tkrd: Trusted kernel rootkit
detection for cybersecurity of vms based on machine learning and
memory forensic analysis,” Mathematical Biosciences and Engineering,
vol. 16, no. 4, pp. 2650–2667, 2019.

[65] D. Tian, R. Ma, X. Jia, and C. Hu, “A kernel rootkit detection approach
based on virtualization and machine learning,” IEEE Access, vol. 7, pp.
91 657–91 666, 2019.

[66] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel,
“Ensuring operating system kernel integrity with osck,” in Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI.
New York, NY, USA: Association for Computing Machinery, 2011, p.
279–290. [Online]. Available: https://doi.org/10.1145/1950365.1950398

[67] X. Xiong, D. Tian, and P. Liu, “Practical protection of kernel
integrity for commodity os from untrusted extensions,” in Network
and Distributed System Security Symposium, 2011. [Online]. Available:
https://api.semanticscholar.org/CorpusID:16293986

[68] R. Nikolaev and G. Back, “Virtuos: an operating system with kernel
virtualization,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, ser. SOSP ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 116–132. [Online].
Available: https://doi.org/10.1145/2517349.2522719

[69] “Virtualization based security,” https://learn.microsoft.com/en-
us/windows-hardware/design/device-experiences/oem-vbs, 2023.

[70] X. Ge and T. Jaeger, “Sprobes: Enforcing kernel code integrity on
the TrustZone architecture,” in Proceedings of the Mobile Security
Technologies 2014 Workshop, 2014.

[71] SAMSUNG. (2023) Samsung knox — secure mobile platforms and
solutions. https://www.samsungknox.com/.

[72] ——. (2023, Jul.) Sreal-time kernel protection (rkp).
https://docs.samsungknox.com/admin/fundamentals/whitepaper/
core-platform-security/real-time-kernel-protection/.

[73] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve,
“Nested kernel: An operating system architecture for intra-kernel priv-
ilege separation,” in Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 2015, pp. 191–206.

https://doi.org/10.1145/1950365.1950398
https://api.semanticscholar.org/CorpusID:16293986
https://doi.org/10.1145/2517349.2522719
https://www.samsungknox.com/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/core-platform-security/real-time-kernel-protection/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/core-platform-security/real-time-kernel-protection/

	Introduction
	Background
	Threat Model and Assumption
	SECvma Architecture
	Kernel Memory Protection
	Memory Usage Tracking
	Kernel page table protection
	User page table protection
	DMA Protection

	Dynamic Module Loading
	System Register Protection

	Implementation
	Addressing Limitations of Arm VE
	Optimizations

	Evaluation
	Security Analysis

	Limitations and Future Work
	Related Work
	Conclusion
	References

