
Performance Implications of SEV Virtual
Machine Live Migration

Jian-Lin Li and Shih-Wei Li

National Taiwan University, Taiwan
b07902103@ntu.edu.tw, shihwei@csie.ntu.edu.tw

Abstract. AMD introduced Secure Encrypted Virtualization (SEV) to
support confidential computing. This work evaluated the performance
of SEV virtual machine (VM) live migration using the state-of-the-art
Linux Kernel Virtual Machine (KVM) implementation for the first time.
We found that the live migration of SEV VMs exhibits much higher
performance overhead than regular VMs. Instead of adopting a clean-
slate approach, we call for retrofitting KVM migration’s optimizations,
including parallel migration and post-copy, to support SEV VMs. We
identified key limitations of SEV that prohibit the proposed extension
and demonstrated that KVM’s approaches can be incorporated to im-
prove performance effectively by addressing the limitation.

Keywords: Live VM Migration · Confidential Computing · AMD SEV

1 Introduction

To secure user data in virtual machine deployments to the shared cloud environ-
ments, confidential VMs (CVMs) have been developed recently to protect VM
data from privileged attackers that control the hypervisor. AMD introduced Se-
cure Encrypted Virtualization (SEV) [3,4] support CVMs by encrypting their
data. Cloud vendors [10,19] have leveraged SEV to host CVMs for their users.

VM live migration is an essential virtualization feature in which a hypervisor
migrates running VMs from one hosted server hardware to another without in-
terrupting the VMs’ regular services and operations. Cloud vendors leverage live
migration to support VM load balancing across multiple sites. Despite the ben-
efits, the current VM live migration approaches employed by hypervisors do not
work for CVMs because hypervisors, by default, cannot access the unencrypted
states of CVMs. To address the limitation, SEV has exposed a set of commands
to untrusted hypervisors to migrate CVM states while preserving their protec-
tion. The hypervisor can use the commands to establish a trusted migration
session and to export and import the encrypted VM CPU and memory states.
The existing live migration logic in hypervisors like KVM [17] was retrofitted to
use these commands to migrate SEV VMs.

This work evaluated the live migration performance of SEV VMs on the state-
of-the-art KVM implementation on AMD server hardware for the first time. We
found that migrating SEV VMs could suffer many orders of magnitude longer



2 Jian-Lin Li and Shih-Wei Li

service downtime and total migration time than regular VMs. We found that
cryptography operations involved in migrating VM memory pages during the
live migration process resulted in significant performance overhead.

Clean-slate approaches that leverage a SEV VM [8,24] to reduce the SEV’s
live migration overhead have been proposed. However, to our best knowledge,
none of the approaches support SEV VM live migration on actual SEV hard-
ware. To address the performance issue, we call for extending KVM’s existing
optimizations, including post-copy and parallel live migration to support migrat-
ing SEV VMs. Retrofitting KVM’s existing migration codebase for regular CVMs
to support SEV simplifies implementation efforts and enhances maintainability.

We identified that SEV’s migration support is incompatible with the per-
formance requirements of parallel live migration and functionality requirements
of post-copy, making it impossible for SEV VM to benefit from their efficiency.
We proposed updates to AMD SEV to address the limitations in live migra-
tion and mimicked the changes in a QEMU/KVM prototype. We evaluated the
prototype and demonstrated that adopting KVM’s optimization approaches, in-
cluding post-copy and parallel migration, could significantly improve the live
migration performance of SEV VMs.

2 Background

2.1 VM Live Migration

To migrate a virtual machine from a source to a destination platform, the source
hypervisor saves the VM’s execution states and transfers them to the destina-
tion without stopping the VM. The primary bottleneck in live migration is the
transfer of VM memory. Stopping the VM and sending all its state can lead
to long VM downtime. KVM, by default, uses pre-copy[9], which transfers all
VM memory at the beginning and only transfers the dirty pages in successive
iterations. Pre-copy pauses the source VM when the number of dirty pages in an
iteration stabilizes within a predefined threshold and enters the stop-and-copy
phase. The source sends the dirty pages and the VM’s CPU and device states to
the destination. Parallel migration strategies, like KVM/QEMU’s MultiFD [16],
use concurrent sending and receiving threads to increase memory transfer band-
width. In contrast, post-copy [13] transfers a VM’s CPU and device states to
the destination to resume the VM, then migrates memory upon the destination
VM’s Nested Page Table (NPT) faults. The destination requests missing page
contents from the source. Upon receiving the contents, the destination hyper-
visor maps the VM’s NPT to a newly allocated page containing the retrieved
data, resolving the NPT fault.

2.2 Secure Encrypted Virtualization (SEV)

AMD’s SEV [3] extends AMD’s EPYC CPUs to protect CVMs against privi-
leged attackers who control the hosted hypervisor. AMD extends the memory



Performance Implications of SEV Virtual Machine Live Migration 3

controller to include an encryption engine that encrypts VM memory with a
per-VM AES-128 encryption key (VEK). The VEK is used to encrypt the VM’s
CPU states in the SEV-ES (Encrypted State) extension.

SEV incorporates a secure firmware that runs on an Arm-based Platform
Security Processor (PSP) to support key management. The firmware provides
commands to the hypervisor to export and import encrypted VM states in CPU
registers and memory, securing CVMs’ states when migrating them across sites.
Since VM states are encrypted, a malicious hypervisor cannot compromise the
safety of the CVM during the live migration process. Since SEV assumes VMs
using end-to-end I/O protection, CVMs can reuse regular VM’s approach to
migrate virtual I/O devices. KVM [17] was extended to leverage SEV’s migra-
tion commands to support pre-copy. The hypervisors’ functionality, including
networking and file systems, and the hypervisors’ existing logic for migrating
regular VMs can be reused to simplify implementation efforts.

Crypto Context 
Setup

(RUNNING)

Source 
Action 
(State)

Destination 
Action 
(State)

Data Exports
(SUPDATE)

Finalize 
Migration
(SENT)

Crypto Context 
Setup

(UNINIT)

①

③ RECEIVE_START
Data Imports
(RUPDATE)

⑤ RECEIVE_UPDATE_DATA/
RECEIVE_UPDATE_VMSA

Finalize 
Migration

(RUNNING)

⑦

SEV 
Command

② SEND_START

④ SEND_UPDATE_DATA/
SEND_UPDATE_VMSA

⑥ SEND_FINISH

⑧ RECEIVE_FINISH

Fig. 1. Live migration flow and state diagram of SEV with pre-copy

AMD SEV does not migrate a VM’s VEK across platforms. Instead, it uses
Diffie-Hellman to establish a shared transport key called the transport encryp-
tion key (TEK) to encrypt the migrated VM states. Figure 1 shows that the
source authenticates the credential sent from the destination at 1 then makes
SEND_START at 2 to generate a new cryptographic context that includes the
TEK for the migration session. The source sends the context to the destination,
and the latter runs RECEIVE_START at 3 to derive the TEK.

The SEV firmware uses the per-migration session TEK to encrypt and de-
crypt the VM states transferred between the migration source and destination.
SEV’s secure firmware provides the source hypervisor with SEND_UPDATE_DATA
and SEND_UPDATE_VMSA, to export VM memory and CPU states. To export en-



4 Jian-Lin Li and Shih-Wei Li

crypted states for VM live migration, the firmware first decrypts them using
the VEK and re-encrypts them using the VM’s TEK. During the import, the
firmware first uses the TEK to decrypt the encrypted states and re-encrypt them
using the destination VM’s VEK. The VEK is created by the destination hyper-
visor for the migrated VM. At 4 in Figure 1, to support pre-copy, the source
hypervisor invokes SEND_UPDATE_DATA to export dirty pages; when the source
pauses the VM, it makes SEND_UPDATE_VMSA to export VCPUs. At 5 , the des-
tination hypervisor uses RECEIVE_UPDATE_DATA and RECEIVE_UPDATE_VMSA to
import the encrypted memory pages and VCPU registers into the SEV VM.

3 Live Migration Performance of SEV VMs

We evaluated the performance of SEV-based CVM live migration on the current
KVM implementation using pre-copy. We measured the CVMs running widely
used server applications to quantify the performance in practical use cases.

3.1 Experimental Setup

We used mainline Linux kernel v5.19, and an extended QEMU [7] and OVMF [6]
for SEV VM live migration; the latter is used for the firmware of guest VMs.
We used the AMD EPYC Rome server with a 16-core 64-bit 3GHz processor,
128 GB of RAM, a 480 GB SATA3 SSD, and a dual-port Mellanox ConnectX-
5 25Gb NIC. VMs were configured with its standard virtio network and with
cache=none for its virtual block storage devices [18,21,12]. We ran an unmodified
Linux v5.19 in the VM. We compiled the kernels for KVM and VMs using the
same configuration. Hosts and VMs ran on Ubuntu 20.04 and Ubuntu 18.04,
respectively. In our setup, the source and the destination machine share the
VM’s virtual disk image via a shared folder on an NFS file system.

For all client-server workloads, clients ran on a third machine separated from
the source and destination. All machines were identical. We tested multiprocessor
VMs with the following configurations.

– VM with 4 virtual CPUs and 1 GB RAM
– VM with 4 virtual CPUs and 4 GB RAM

Benchmarks. We evaluated the live migration of VMs running the three
benchmarks shown in Table 1. The VM config with 1 GB RAM is used to
evaluate the Idle and Apache benchmark, while the VM config with 4 GB RAM
is employed for testing the Memcached benchmark. We observed that Apache,
by default, results in a small working set. Thus, we tested Apache with stress
to enlarge the working set. In addition, we tested Memcached, which exhibits a
much larger working set than Apache on a VM with more RAM than the Apache
config to increase the amount of transferred memory without employing stress.
The clients ran natively on Linux for Apache and Memcached experiments and
used the full hardware.



Performance Implications of SEV Virtual Machine Live Migration 5

Configuring downtime limit. QEMU uses a migration parameter called
downtime limit to determine when a pre-copy-based live migration enters the last
iteration, i.e., the stop-and-copy phase. Therefore, a proper setting for downtime
limit can be crucial for the evaluation. For our experiment, every configuration
has a fixed workload. Thus, we can first find a proper downtime limit for each
setting and then use the respective downtime limit to evaluate performance. We
configured a minimal downtime limit for each benchmark that converges migra-
tion for different settings. “Convergence" means that the migration is completed.

Table 1. Evaluated benchmarks

Benchmark Description
Idle Idle VM with 1 GB RAM.
Apache Apache v2.4.29 server running in the VM to host its de-

fault web page (about 10KB). The remote client runs the
ApacheBench [23] v2.4.54 to establish 100 concurrent connec-
tions to the web server.

Apache Stress The VM uses the same config as Apache to serve 100 con-
current connections from a remote client. The VM runs Linux’s
stress command to generate memory pressure in the background.
(stress –vm 1 –vm-bytes 256M)

Memcached Memcached v1.5.6 server configured with 4 threads and 3 GB
cache running in the VM, handling set-get operation ratio of 1:1
from a remote YCSB [1] 0.17 client using 8 threads. The cache
is filled up before the benchmark starts.

3.2 Performance Results

Table 2. Performance of VMs with pre-copy (in millisecond)

Idle Apache Apache Stress Memcached

Down Total Down Total Down Total Down Total

KVM-x86 195.8 876.3 214.8 1059.6 305.9 1490.8 574.4 2767.2

SEV 266.2 197393.1 17016.7 346057.5 131660.9 363965.8 241768.4 2905760.4

We present the live migration performance of SEV-based CVM using pre-
copy in Table 2. The results are the average of 10 migration sessions. We retrieved
the numbers from the source QEMU via the command info migrate for the
normal VMs (KVM-x86) and CVMs (SEV). We report the following metrics:

– Downtime: the time spent in the stop-and-copy phase at the source QEMU.
(column Down).



6 Jian-Lin Li and Shih-Wei Li

– Total time: the time the QEMU takes to complete the entire migration
process, including data migration and setup time. (column Total).

The result shows that the downtime of SEV-based CVM is more than 35%
worse than normal VMs for idle VMs. A few dirty pages were sent during the
stop-and-copy phase in, so the migration overhead was relatively insignificant.
On the other hand, the total time of migrating idle CVMs is significantly longer
than normal VMs due to the cryptography operations involved during the mi-
gration process. Running an Apache (with memory stress) and Memcached that
actively serves network requests increases the dirty pages in the working set;
more dirty pages need to be sent during the migration process, resulting in sig-
nificantly worse performance than idle VMs. The increase in the VM’s working
set results in more dirty pages that must be migrated. When using pre-copy,
SEV-based CVMs required more than 1050× longer total migration time than
regular VMs when running Memcached.

4 Optimizing Live Migration Performance of SEV VMs

Previous works [24] introduced clean-slate approaches to support the live mi-
gration of SEV VMs. Specifically, these work offload operations from the SEV
firmware to optimize performance. They either rely on a mirror SEV VM [24] or
an in-CVM Service Module [8] to provide migration service to the hypervisor.
However, to our best knowledge, no existing implementation of these approaches
supports migrating SEV VMs. Further, whether these approaches support ex-
isting optimizations, such as parallel migration, is uncertain. In contrast to the
previous efforts, we propose extending KVM’s existing migration optimizations,
including parallel migration (MultiFD) and post-copy to support SEV VMs —
this simplifies implementation efforts and improves maintainability and deploy-
ments. We identified that the current live migration commands provided by
SEV’s secure firmware is incompatible with the performance and functionality
requirements of the existing optimization approaches for the parallel live migra-
tion with MultiFD and post-copy; therefore, SEV CVMs cannot leverage their
performance efficiency.

In this section, we first discuss our attempts to extend KVM/QEMU to sup-
port parallel migration (MultiFD). Further, we substantiate key limitations of
the SEV firmware that make it incompatible with post-copy in Section 4.2. We
detail SEV’s limitations that result in compatibility issues concerning perfor-
mance and functionality. We then propose extensions for the secure firmware to
address the issues.

4.1 Extending KVM/QEMU FOR MultiFD Support of SEV VM

We extended the current KVM/QEMU implementation for SEV, which imple-
ments the pre-copy approach to support MultiFD. The implementation already
makes commands to setup a migration session (see Figure 1) to initiate a migra-
tion session and perform transport key exchange. We added additional export



Performance Implications of SEV Virtual Machine Live Migration 7

and import SEV commands in the sending and receiving MultiFD threads. We
modified the source hypervisor to make the command SEND_UPDATE_DATA be-
fore placing VM memory in the sending queue. The destination hypervisor is
extended to issue the command RECEIVE_UPDATE_DATA to decrypt the migrated
VM memory. We were unable to extend QEMU/KVM to support post-copy.

We evaluated the live migration performance of our MultiFD implementa-
tion for SEV VMs running the three benchmarks from Table 1. We found that
MultiFD resulted in modest performance improvement for SEV CVMs. The mi-
gration downtime and total time reduction was no more than 5% in all cases.
We detail why the current QEMU/KVM implementation for SEV fails to benefit
from the MultiFD in Section 4.2.

4.2 Compatibility Issues

Performance Incompatibility with MultiFD. AMD’s secure firmware poses
limitations that make it unable to export and import SEV VM’s memory in
multiple execution threads in parallel based on MultiFD. The AMD SEV API
Specification [3] requires that no SEV firmware commands can be processed
before the last command receives a response. This prevents commands from
executing in parallel. Given that AMD does not disclose the hardware design of
PSP, we hypothesize this is likely because the SEV firmware runs on a single-
processor PSP. This requirement prevents live migration benefits from MultiFD.
Although each sending thread on the source can issue the SEND_UPDATE_DATA
command in parallel from the hypervisor’s point of view, those commands can
only be processed by the SEV firmware sequentially. Hence the costly crypto
operations involved in handling the command cannot be performed in parallel.

Functionality Incompatibility with Post-Copy. SEV’s firmware ensures
that the hypervisor calls SEV migration commands in proper order. The invo-
cation against the migration of a specific VM must match the expected VM
GSTATE. Only certain commands are allowed to be executed in one GSTATE.
As shown in Figure 1, the SEV firmware maintains a guest state (GSTATE) ma-
chine for each guest to track the VM’s execution state during its lifetime. After
the SEND_START command is called, the source transitions from the RUNNING
state to the SUPDATE state; similarly, the destination moves from the UINIT
state to the RUPDATE state after it calls the RECEIVE_START command. After
all VM state is sent to the destination, the source issues SEND_FINISH at 6 .
This transitions the VM to the SENT state as shown in Figure 1. The source
notifies the destination of the end of data export at 7 , which the destination
subsequently invokes RECEIVE_FINISH at 8 to finalize the migration session.
Executing the command transitions the VM state to RUNNING.

Such restrictions render post-copy incompatible with the current AMD SEV’s
migration commands. As discussed in Section 2.1, post-copy requires the des-
tination hypervisor to resume the VM and then migrate memory contents on
demand when the VM later page faults. The SEV firmware only permits the
invocation of the RECEIVE_UPDATE_DATA command when the destination



8 Jian-Lin Li and Shih-Wei Li

VM’s GSTATE is RUPDATE. However, to run a migrated VM, the firmware
requires that the destination SEV VM’s GSTATE be set as the RUNNING state.
This incompatibility prevents the destination hypervisor from using the SEV’s
migration import commands RECEIVE_UPDATE_DATA or RECEIVE_UPDATE_VMSA
to import the encrypted VM data transferred from the source. The migration
commands are essential for migrating the SEV VM’s state. The SEV firmware
provides no other command to the hypervisor to decrypt the received page con-
tents using the migration transport key, TEK.

Address SEV’s Incompatibility. We proposed the following extensions to
SEV to lift the restrictions.

– MultiFD. Process SEV migration commands concurrently to increase the
migration throughput. The extension requires hardware and firmware multi-
processor support on PSP.

– Post-copy. To (1) support importing VM memory when the VM’s GSTATE
is RUNNING; (2) support exporting VM memory from the source VM after it
switches to the SENT state. Specifically, the secure firmware could add a new
command that can be executed after the VM resumes at the destination; the
command should match the functionality of RECEIVE_UPDATE_DATA.
The firmware could add another command to deliver the functionality of
SEND_UPDATE_DATA for the source hypervisor to export VM memory
states after the VM is paused.

4.3 Evaluation of SEV VM Live Migration with Optimizations

We mimicked SEV’s performance overhead on the codebase in QEMU/KVM for
regular VM migration to demonstrate the potential performance improvement
the SEV VM should achieve when incorporating the live migration optimizations.
In QEMU, we simulate the proposal by building Pseudo-SEV QEMU, which lifts
the compatibility issues incurred by AMD SEV’s secure firmware. Pseudo-SEV
mimics the cost of SEV commands on top of a mainline KVM. Pseudo-SEV
QEMU is based on QEMU 6.0.91. We ported AMD’s updates to QEMU for
SEV to Pseudo-SEV QEMU. AMD’s QEMU implementation makes the ioctl
system calls to KVM. Each SEV’s ioctl makes a respective SEV command to
support the VM live migration process shown in Figure 1. Pseudo-SEV QEMU
supports the same migration logic as AMD’s QEMU but does not make the
actual SEV ioctls. Instead, we instrumented Pseudo-SEV QEMU to replace the
ioctls with respected functions that mimic the exact cost shown in Figure 1 as
the intended SEV ioctl requires. In the worst case, the cost difference between
the real and the pseudo ioctls are bounded by 5%. To implement pseudo-SEV
QEMU, we added and modified 624 LOC to QEMU.

Pseudo-SEV QEMU supports pre-copy, post-copy, and MultiFD migration.
SEV’s functions for pre-copy for the setup phase and VM resume are reused to
mimic the cost of starting and finishing a migration session. Additionally, we
instrumented the existing code paths for post-copy and MultiFD in pseudo-SEV
QEMU in the migration Setup phase and for places where VM states import and



Performance Implications of SEV Virtual Machine Live Migration 9

export were required to mimic the cost when migrating a SEV-based CVM. By
instrumenting existing code paths, we removed the limitations of the firmware
API. For MultiFD, we mimicked the migration cost in each respective sending
and receiving thread to do the memory export and import in parallel.

Table 3. Performance of VMs on pseudo-SEV (Normalized to pre-copy)

MultiFD-2 MultiFD-4 MultiFD-8 post-copy

Down Total Down Total Down Total Down Total

Idle 0.93 1.01 0.92 0.68 0.95 0.40 0.99 0.23

Apache 0.39 0.55 0.16 0.29 0.07 0.15 0.01 0.53

Apache Stress 0.57 0.52 0.23 0.31 0.11 0.17 0.0025 0.51

Memcached 0.58 0.69 0.37 0.49 0.28 0.32 0.001 0.51

We evaluated the benchmarks from Table 1 with the same configuration
used in Section 3.1 to investigate the efficacy of SEV VM employing the VM live
migration optimizations. Table 3 presents the performance of SEV and pseudo-
SEV. The results are normalized to the pre-copy-based implementation with the
same setting to present the efficacy of adopting the optimization approaches.
For idle SEV VM, we normalized the total time and downtime of MultiFD and
post-copy to the results of SEV’s default pre-copy approach. Table 3 shows
that SEV VMs employing KVM’s existing optimizations could significantly im-
prove VM migration performance. In the best case, MultiFD can reduce the
total time by more than 80% and the downtime by 90% (MultiFD-8 for Apache
and Apache Stress). The results show that incorporating MultiFD to parallelize
cryptographic operations involved in migrating VM memory effectively reduced
the downtime and total time. The post-copy approach can reduce more than
1000× in downtime, as it avoids transferring VM memory in the stop-and-copy
phase. Post-copy only transfers the VM pages upon the occurrence of Nested
Page Table faults from the destination VM. Unlike pre-copy, post-copy avoids
transferring dirty VM pages multiple times, thus also achieving a much shorter
total time (50% less) than pre-copy.

While the post-copy approach can effectively reduce the downtime reported
by the source QEMU, it did not cover the cost at the destination platform.
Typically, when migrating confidential VMs, the destination hypervisor must
perform crypto operations to decrypt the migrated VM states for imports and
handle NPT page faults if post-copy is adopted. The cost could be nontrivial.
To evaluate the VM migration overhead at destination platforms, we measured
the Apache server’s throughput at various sample points throughout the VM
migration process. The results on KVM and pseudo-SEV were shown in Figure 2.

Figure 2 shows that the pseudo-SEV VM’s unresponsive time (i.e., requests
per second hits zero) is much higher than the regular VM’s because the crypto
operations used for VM states encryption and decryption throttled the migra-



10 Jian-Lin Li and Shih-Wei Li

0 2 4 6 8 10 120

5000

10000

15000

20000

25000

re
qu

es
ts

/s
ec

KVM Pre-Copy

0 2 4 6 8 10 12

KVM MultiFD-8

0 2 4 6 8 10 12

KVM Post-Copy

0 100 200 300 400 500
Elapsed time (sec)

0

5000

10000

15000

20000

25000
re

qu
es

ts
/s

ec
pseudo-SEV Pre-Copy

0 20 40 60 80
Elapsed time (sec)

pseudo-SEV MultiFD-8

0 50 100 150 200
Elapsed time (sec)

pseudo-SEV Post-Copy

Fig. 2. Apache Throughput during VM Live Migration

tion throughput. Compared to pre-copy, the unresponsive time is reduced when
MultiFD is adopted, as MultiFD increases the migration throughput. The VM’s
unresponsive time is much longer than the downtime showed in Table 2 and
Table 3. As discussed earlier, the source QEMU reported the time taken during
the stop-and-copy phase as downtime. When post-copy is employed, the cost
of handling NPT page faults at the destination platform communicating with
the source is non-negligible. Such cost was not counted in QEMU’s reported
downtime but appeared in the VM’s unresponsive time.

5 Related Work

VM Live Migration. In addition to pre-copy[9], parallel migration [20], and post-
copy [13], Svärd et al. [22] proposed to compress the transferred memory pages
to boost the migration throughput and thus reduce downtime, while Hacking et
al. [11] proposed compressing dirty pages sent during live migration iterations.
Abe et al. [2] paravirtualized the guest kernel to provide the VM’s working set
to the hypervisor for transferring in advance to reduce the performance impact
resulting from the post-copy transfer. Pre-paging and dynamic ballooning [13]
were also proposed to optimize migration downtime. These methods could be
employed to optimize the live migration performance of SEV VMs.

Confidential Virtual Machines. Intel TDX [14] introduced hardware extensions
to secure the data of its CVMs, Trusted Domains (TDs). It runs a secure firmware
module in an isolated CPU operation context called the Secure-Arbitration Mode
(SEAM) mode. The module deprivileges the hypervisor, performs VM enters,
and interposes VM exits to protect VM data. Intel TDX leverages hardware
cryptographic support to protect VM memory. It uses the TME-MK engine
to encrypt VM memory and protect its integrity. Intel TDX [15] proposes an
auxiliary CVM, MigTD, and a privileged TDX module to support CVM live
migration. Unlike AMD SEV, Intel TDX supports post-copy and parallel live
migration. In addition, Arm has also introduced CCA [5] for the Arm v9.2 ar-
chitecture to support confidential VMs called the Realms. CCA does not sup-
port live migration. Hardware with Intel TDX and CCA has not been publicly



Performance Implications of SEV Virtual Machine Live Migration 11

available at the time of writing. We were unable to evaluate their CVMs’ live
migration performance. Should the hardware be available, we plan to evaluate
the live migration performance of TDX-based CVMs. Further, we aim to explore
designing live migration support for Arm CCA.

6 Conclusion

We evaluated the live migration performance of SEV-based confidential VMs in
this work for the first time. We found that migrating SEV VMs on KVM incurs
a significant performance slowdown. We proposed extending the KVM imple-
mentation for SEV to address the performance issue and support the existing
optimization approaches, such as parallel and post-copy migration. We identified
SEV’s limitations that make it incompatible with these approaches. We proposed
extensions to SEV to address the limitations. We mimicked the intended changes
in a KVM implementation and showed that the live migration performance of
SEV VMs could be substantially improved when the optimizations are adopted.
We hope the paper’s findings will help to improve SEV’s ecosystem in cloud
deployments. We call to address the incompatibility issues in AMD SEV and
facilitate the adoption of KVM’s existing optimization approaches.

Acknowledgement

We thank the anonymous reviewers for their insightful feedback. Kaiwen Xue
helped with writing the early drafts of the paper. This research was supported in
part by the National Science and Technology Council of Taiwan under research
grants 111-2628-E-002-022- and 112-2628-E-002-027-.

References

1. Yahoo! Cloud Serving Benchmark. https://github.com/brianfrankcooper/YCSB
2. Abe, Y., Geambasu, R., Joshi, K., Satyanarayanan, M.: Urgent virtual ma-

chine eviction with enlightened post-copy. SIGPLAN Not. 51(7), 51–64 (mar
2016). https://doi.org/10.1145/3007611.2892252, https://doi.org/10.1145/
3007611.2892252

3. Advanced Micro Devices: Secure Encrypted Virtualization API Version
0.24. https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_
Specification.pdf (Apr 2020)

4. Advanced Micro Devices: SEV Secure Nested Paging Firmware ABI Specification.
https://www.amd.com/system/files/TechDocs/56860.pdf (Nov 2022)

5. ARM Ltd.: Introducing Arm Confidential Compute Architecture Version
1 (May 2022), https://developer.arm.com/documentation/den0125/0100/
What-is-Arm-CCA-

6. Ashish Kalra: Retrofitted EDK2. https://github.com/ashkalra/edk2-1/tree/
sev_live_migration_v5_11 (Sep 2021)

7. Ashish Kalra: Retrofitted QEMU. https://github.com/AMDESE/qemu/tree/sev_
live_migration_v4_1 (Sep 2021)

https://github.com/brianfrankcooper/YCSB
https://doi.org/10.1145/3007611.2892252
https://doi.org/10.1145/3007611.2892252
https://doi.org/10.1145/3007611.2892252
https://doi.org/10.1145/3007611.2892252
https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/system/files/TechDocs/56860.pdf
https://developer.arm.com/documentation/den0125/0100/What-is-Arm-CCA-
https://developer.arm.com/documentation/den0125/0100/What-is-Arm-CCA-
https://github.com/ashkalra/edk2-1/tree/sev_live_migration_v5_11
https://github.com/ashkalra/edk2-1/tree/sev_live_migration_v5_11
https://github.com/AMDESE/qemu/tree/sev_live_migration_v4_1
https://github.com/AMDESE/qemu/tree/sev_live_migration_v4_1


12 Jian-Lin Li and Shih-Wei Li

8. Carlos Bilbao: The Linux SVSM project (Jan 2023), https://lwn.net/Articles/
921266/

9. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: 2nd Symposium on Networked
Systems Design & Implementation (NSDI 05). USENIX Association, Boston, MA
(May 2005)

10. Google Inc.: Confidential VM overview, https://cloud.google.com/
confidential-computing/confidential-vm/docs/confidential-vm-overview

11. Hacking, S., Hudzia, B.: Improving the live migration process of large enterprise
applications. In: Proceedings of the 3rd International Workshop on Virtualiza-
tion Technologies in Distributed Computing. p. 51–58. VTDC ’09, Association for
Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/
1555336.1555346, https://doi.org/10.1145/1555336.1555346

12. Hajnoczi, S.: An Updated Overview of the QEMU Storage Stack. https://events.
linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011_hajnoczi.pdf
(Jun 2011)

13. Hines, M.R., Gopalan, K.: Post-copy based live virtual machine migration us-
ing adaptive pre-paging and dynamic self-ballooning. In: Proceedings of the 2009
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments. p. 51–60. VEE ’09, Association for Computing Machinery, New York, NY,
USA (2009). https://doi.org/10.1145/1508293.1508301, https://doi.org/10.
1145/1508293.1508301

14. Intel Corporation: Intel® Trust Domain Extensions (Intel® TDX). https://
cdrdv2.intel.com/v1/dl/getContent/733582 (Feb 2023)

15. Intel Corporation: Trust Domain Extension (TDX) Migration TD Design Guide.
https://cdrdv2.intel.com/v1/dl/getContent/733580 (Mar 2023)

16. Juan Quintela: QEMU/Migration-Multiple-fds, https://wiki.qemu.org/
Features/Migration-Multiple-fds

17. Kalra, A.: Add amd sev guest live migration support. https://lwn.net/Articles/
851648/, accessed: 2023-05-14

18. KVM Contributors: Tuning KVM. http://www.linux-kvm.org/page/Tuning_KVM
(May 2015)

19. Microsoft Corporation: AMD and Azure, https://azure.microsoft.com/en-us/
partners/directory/amd-corporation/

20. Song, X., Shi, J., Liu, R., Yang, J., Chen, H.: Parallelizing live migration of vir-
tual machines. In: Proceedings of the 9th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. p. 85–96. VEE ’13 (2013)

21. SUSE: Performance Implications of Cache Modes. https://www.suse.com/
documentation/sles11/book_kvm/data/sect1_3_chapter_book_kvm.html (Sep
2016)

22. Svärd, P., Hudzia, B., Tordsson, J., Elmroth, E.: Evaluation of delta compression
techniques for efficient live migration of large virtual machines. In: Proceedings of
the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments. p. 111–120. VEE ’11, Association for Computing Machinery, New
York, NY, USA (2011). https://doi.org/10.1145/1952682.1952698, https://
doi.org/10.1145/1952682.1952698

23. The Apache Software Foundation: ab - Apache HTTP server benchmarking tool.
http://httpd.apache.org/docs/2.4/programs/ab.html (Apr 2015)

24. Tobin Feldman-Fitzthum, Dov Murik: Secure Live Migration of En-
crypted VMs (Sep 2021), https://research.ibm.com/publications/
secure-live-migration-of-encrypted-vms

https://lwn.net/Articles/921266/
https://lwn.net/Articles/921266/
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://doi.org/10.1145/1555336.1555346
https://doi.org/10.1145/1555336.1555346
https://doi.org/10.1145/1555336.1555346
https://doi.org/10.1145/1555336.1555346
https://doi.org/10.1145/1555336.1555346
https://events.linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011_hajnoczi.pdf
https://events.linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011_hajnoczi.pdf
https://doi.org/10.1145/1508293.1508301
https://doi.org/10.1145/1508293.1508301
https://doi.org/10.1145/1508293.1508301
https://doi.org/10.1145/1508293.1508301
https://cdrdv2.intel.com/v1/dl/getContent/733582
https://cdrdv2.intel.com/v1/dl/getContent/733582
https://cdrdv2.intel.com/v1/dl/getContent/733580
https://wiki.qemu.org/Features/Migration-Multiple-fds
https://wiki.qemu.org/Features/Migration-Multiple-fds
https://lwn.net/Articles/851648/
https://lwn.net/Articles/851648/
http://www.linux-kvm.org/page/Tuning_KVM
https://azure.microsoft.com/en-us/partners/directory/amd-corporation/
https://azure.microsoft.com/en-us/partners/directory/amd-corporation/
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter_book_kvm.html
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter_book_kvm.html
https://doi.org/10.1145/1952682.1952698
https://doi.org/10.1145/1952682.1952698
https://doi.org/10.1145/1952682.1952698
https://doi.org/10.1145/1952682.1952698
http://httpd.apache.org/docs/2.4/programs/ab.html
https://research.ibm.com/publications/secure-live-migration-of-encrypted-vms
https://research.ibm.com/publications/secure-live-migration-of-encrypted-vms

	Performance Implications of SEV Virtual Machine Live Migration

